当前位置: 首页 > AI > 文章内容页

浅析 Swin Transformer

时间:2025-07-18    作者:游乐小编    

本文围绕Swin Transformer展开,介绍其作为通用视觉骨干网,采用层次化结构与移位窗口机制提升效率。解读其解决CV挑战的创新点,展示代码构造,包括MLP、窗口划分合并、注意力机制等模块,还给出模型定义、大小及在Cifar10上的训练情况,指出其收敛较慢。

浅析 swin transformer - 游乐网

Swin Transformer

浅析 Swin Transformer - 游乐网        

Swin Transformer (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.

paper:https://arxiv.org/pdf/2103.14030.pdf

github: https://github.com/microsoft/Swin-Transformer

前言

hi guy!欢迎来到这里,这里是对swin transformer的复现工作,众周所知transformer尽管在CV任务有着不俗的表现,但是这是牺牲了速度与算力为原则,这也是现在传统CNN没有被transformer取代的原因——CNN实在是太成熟了,目前业界不会冒风险并再挖坑填坑接纳transformer,而要想transformer替代CNN,必须要在各大CV任务上遥遥领先与传统CNN并且速度不亚于传统CNN,这样才会让业界重新花费代价去部署接纳transformer,这也是目前CV任务的研究热点,而这篇文章让人眼前一亮,让transformer替代CNN更接近了一步,这是一篇很好的论文,非常值得大家一读

浅析 Swin Transformer - 游乐网        

本代码基于最新Pytorch,保证原汁原味复现与 寂寞你快进去 大佬撞车,不得不说大佬复现项目速度很快,要说不同就是本项目无需依赖PPIM了解代码需要了解基本的 transformer,比如self attention,mha等,本文不做详细解释

论文解读

transformer在CV面临两个挑战

目标尺度不平衡计算量太大

上述说明的更多是object detection和Semantic segmentation等,这些任务在目标尺度变化很大,所以之前object detection排行榜(COCO)一直都是Scaled-YOLOv4等传统CNN霸占着

为了解决上述问题,本文提出了两个创新点

引入CNN中常用的层次化构建方式构建层次化Transformer引入locality思想,对无重合的window区域内进行self-attention计算

浅析 Swin Transformer - 游乐网        

而本文精彩的地方,是针对分割后的window,进行重组,加强网络特征提取能力

浅析 Swin Transformer - 游乐网        

window分割后,分割的边缘失去了整体信息,网络更多关注window的中心部分,而边缘提供的信息有限,通过重组(一般是在第二个transformer blocks)进行更强的特征提取

代码构造

paddle没有torch一些api,需要自己定义

一部分代码参考timm库 :https://github.com/rwightman/pytorch-image-models

torch.masked_fill == masked_filltorch.transpose == swapdimto_2tuple == 参考timmDroupPath == 参考timmIdentity == 参考torchIn [2]
import paddleimport paddle.nn as nnfrom itertools import repeatdef masked_fill(tensor, mask, value):    cover = paddle.full_like(tensor, value)    out = paddle.where(mask, tensor, cover)    return outdef swapdim(x,num1,num2):    a=list(range(len(x.shape)))    a[num1], a[num2] = a[num2], a[num1]    return x.transpose(a)def to_2tuple(x):    return tuple(repeat(x, 2))def drop_path(x, drop_prob = 0., training = False):    if drop_prob == 0. or not training:        return x    keep_prob = 1 - drop_prob    shape = (x.shape[0],) + (1,) * (x.ndim - 1)      random_tensor = paddle.to_tensor(keep_prob) + paddle.rand(shape)    random_tensor = paddle.floor(random_tensor)     output = x.divide(keep_prob) * random_tensor    return outputclass DropPath(nn.Layer):    def __init__(self, drop_prob=None):        super(DropPath, self).__init__()        self.drop_prob = drop_prob    def forward(self, x):        return drop_path(x, self.drop_prob, self.training)class Identity(nn.Layer):                          def __init__(self, *args, **kwargs):        super(Identity, self).__init__()     def forward(self, input):        return input
登录后复制    

经典的MLP

MLP模块 由PLA推广而来

浅析 Swin Transformer - 游乐网        

In [3]
class Mlp(nn.Layer):    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):        super().__init__()        out_features = out_features or in_features        hidden_features = hidden_features or in_features        self.fc1 = nn.Linear(in_features, hidden_features)        self.act = act_layer()        self.fc2 = nn.Linear(hidden_features, out_features)        self.drop = nn.Dropout(drop)    def forward(self, x):        x = self.fc1(x)        x = self.act(x)        x = self.drop(x)        x = self.fc2(x)        x = self.drop(x)        return x
登录后复制    

window的划分与合并

浅析 Swin Transformer - 游乐网        

window_partition是划分,window_reverse是合并

In [4]
def window_partition(x, window_size):    """    Args:        x: (B, H, W, C)        window_size (int): window size    Returns:        windows: (num_windows*B, window_size, window_size, C)    """    B, H, W, C = x.shape    x = x.reshape([B, H // window_size, window_size, W // window_size, window_size, C])    windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, window_size, window_size, C])    return windowsdef window_reverse(windows, window_size, H, W):    """    Args:        windows: (num_windows*B, window_size, window_size, C)        window_size (int): Window size        H (int): Height of image        W (int): Width of image    Returns:        x: (B, H, W, C)    """    B = int(windows.shape[0] / (H * W / window_size / window_size))    x = windows.reshape([B, H // window_size, W // window_size, window_size, window_size, -1])    x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([B, H, W, -1])    return x
登录后复制    

W-MSA构建

W-MSA(Window based multi-head self attention),它支持带shifted和不带shifted,要想深入理解这个,先从attention讲起


Attention

浅析 Swin Transformer - 游乐网        

浅析 Swin Transformer - 游乐网        

计算复杂度小大量并行运算更好学习远距离依赖

Multi-Head Self-attention

多头注意力(Multi-head Attention)机制是当前大行其道的Transformer、BERT等模型中的核心组件

浅析 Swin Transformer - 游乐网        

将模型分为多个头,形成多个子空间,可以让模型去关注不同方面的信息

浅析 Swin Transformer - 游乐网        

paper:Attention is all you neednum_heads:多注意力机制的头数attn_mask:用于限制attention中每个位置能看到的内容

注意,这一部分是本论文的精华,想要了解的同学必须要看懂源代码

In [5]
class WindowAttention(nn.Layer):    """ Window based multi-head self attention (W-MSA) module with relative position bias.    It supports both of shifted and non-shifted window.    Args:        dim (int): Number of input channels.        window_size (tuple[int]): The height and width of the window.        num_heads (int): Number of attention heads.        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0        proj_drop (float, optional): Dropout ratio of output. Default: 0.0    """    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):        super().__init__()        self.dim = dim        self.window_size = window_size  # Wh, Ww        self.num_heads = num_heads        head_dim = dim // num_heads        self.scale = qk_scale or head_dim ** -0.5        # define a parameter table of relative position bias        relative_position_bias_table = self.create_parameter(            shape=((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads), default_initializer=nn.initializer.Constant(value=0))  # 2*Wh-1 * 2*Ww-1, nH        self.add_parameter("relative_position_bias_table", relative_position_bias_table)        # get pair-wise relative position index for each token inside the window        coords_h = paddle.arange(self.window_size[0])        coords_w = paddle.arange(self.window_size[1])        coords = paddle.stack(paddle.meshgrid([coords_h, coords_w]))                   # 2, Wh, Ww        coords_flatten = paddle.flatten(coords, 1)                                     # 2, Wh*Ww        relative_coords = coords_flatten.unsqueeze(-1) - coords_flatten.unsqueeze(1)   # 2, Wh*Ww, Wh*Ww        relative_coords = relative_coords.transpose([1, 2, 0])                         # Wh*Ww, Wh*Ww, 2        relative_coords[:, :, 0] += self.window_size[0] - 1                            # shift to start from 0        relative_coords[:, :, 1] += self.window_size[1] - 1        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1        self.relative_position_index = relative_coords.sum(-1)                         # Wh*Ww, Wh*Ww        self.register_buffer("relative_position_index", self.relative_position_index)        self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)        self.attn_drop = nn.Dropout(attn_drop)        self.proj = nn.Linear(dim, dim)        self.proj_drop = nn.Dropout(proj_drop)        self.softmax = nn.Softmax(axis=-1)    def forward(self, x, mask=None):        """        Args:            x: input features with shape of (num_windows*B, N, C)            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None        """        B_, N, C = x.shape        qkv = self.qkv(x).reshape([B_, N, 3, self.num_heads, C // self.num_heads]).transpose([2, 0, 3, 1, 4])        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)        q = q * self.scale        attn = q @ swapdim(k ,-2, -1)        relative_position_bias = paddle.index_select(self.relative_position_bias_table,                                                     self.relative_position_index.reshape((-1,)),axis=0).reshape((self.window_size[0] * self.window_size[1],self.window_size[0] * self.window_size[1], -1))        relative_position_bias = relative_position_bias.transpose([2, 0, 1])  # nH, Wh*Ww, Wh*Ww        attn = attn + relative_position_bias.unsqueeze(0)        if mask is not None:            nW = mask.shape[0]            attn = attn.reshape([B_ // nW, nW, self.num_heads, N, N]) + mask.unsqueeze(1).unsqueeze(0)            attn = attn.reshape([-1, self.num_heads, N, N])            attn = self.softmax(attn)        else:            attn = self.softmax(attn)        attn = self.attn_drop(attn)        x = swapdim((attn @ v),1, 2).reshape([B_, N, C])        x = self.proj(x)        x = self.proj_drop(x)        return x
登录后复制    

Block构建与patch merging构建

浅析 Swin Transformer - 游乐网        

前面不做window shifted,后面做window shifted,这样做的好处可以提取较强的语义特征

In [6]
class SwinTransformerBlock(nn.Layer):    """ Swin Transformer Block.    Args:        dim (int): Number of input channels.        input_resolution (tuple[int]): Input resulotion.        num_heads (int): Number of attention heads.        window_size (int): Window size.        shift_size (int): Shift size for SW-MSA.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float, optional): Stochastic depth rate. Default: 0.0        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):        super().__init__()        self.dim = dim        self.input_resolution = input_resolution        self.num_heads = num_heads        self.window_size = window_size        self.shift_size = shift_size        self.mlp_ratio = mlp_ratio        if min(self.input_resolution) <= self.window_size:            # if window size is larger than input resolution, we don't partition windows            self.shift_size = 0            self.window_size = min(self.input_resolution)        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"        self.norm1 = norm_layer(dim)        self.attn = WindowAttention(            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()         self.norm2 = norm_layer(dim)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)        if self.shift_size > 0:            # calculate attention mask for SW-MSA            H, W = self.input_resolution            img_mask = paddle.zeros((1, H, W, 1))  # 1 H W 1            h_slices = (slice(0, -self.window_size),                        slice(-self.window_size, -self.shift_size),                        slice(-self.shift_size, None))            w_slices = (slice(0, -self.window_size),                        slice(-self.window_size, -self.shift_size),                        slice(-self.shift_size, None))            cnt = 0            for h in h_slices:                for w in w_slices:                    img_mask[:, h, w, :] = cnt                    cnt += 1            mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1            mask_windows = mask_windows.reshape([-1, self.window_size * self.window_size])            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)            attn_mask = masked_fill(attn_mask, attn_mask == 0, float(-100.0))            attn_mask = masked_fill(attn_mask, attn_mask != 0, float(0.0))        else:            attn_mask = None        self.register_buffer("attn_mask", attn_mask)    def forward(self, x):        H, W = self.input_resolution        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        shortcut = x        x = self.norm1(x)        x = x.reshape([B, H, W, C])        # cyclic shift        if self.shift_size > 0:            shifted_x = paddle.roll(x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2))        else:            shifted_x = x        # partition windows        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C        x_windows = x_windows.reshape([-1, self.window_size * self.window_size, C])  # nW*B, window_size*window_size, C        # W-MSA/SW-MSA        attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, C        # merge windows        attn_windows = attn_windows.reshape([-1, self.window_size, self.window_size, C])        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C        # reverse cyclic shift        if self.shift_size > 0:            x = paddle.roll(shifted_x, shifts=(self.shift_size, self.shift_size), axis=(1, 2))        else:            x = shifted_x        x = x.reshape([B, H * W, C])        # FFN        x = shortcut + self.drop_path(x)        x = x + self.drop_path(self.mlp(self.norm2(x)))        return xclass PatchMerging(nn.Layer):    """ Patch Merging Layer.    Args:        input_resolution (tuple[int]): Resolution of input feature.        dim (int): Number of input channels.        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):        super().__init__()        self.input_resolution = input_resolution        self.dim = dim        self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)        self.norm = norm_layer(4 * dim)    def forward(self, x):        """        x: B, H*W, C        """        H, W = self.input_resolution        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."        x = x.reshape([B, H, W, C])        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C        x = paddle.concat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C        x = x.reshape([B, -1, 4 * C])  # B H/2*W/2 4*C        x = self.norm(x)        x = self.reduction(x)        return x
登录后复制    

将block和merging融合

In [7]
class BasicLayer(nn.Layer):    """ A basic Swin Transformer layer for one stage.    Args:        dim (int): Number of input channels.        input_resolution (tuple[int]): Input resolution.        depth (int): Number of blocks.        num_heads (int): Number of attention heads.        window_size (int): Local window size.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.    """    def __init__(self, dim, input_resolution, depth, num_heads, window_size,                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None):        super().__init__()        self.dim = dim        self.input_resolution = input_resolution        self.depth = depth                # build blocks        self.blocks = nn.LayerList([            SwinTransformerBlock(dim=dim, input_resolution=input_resolution,                                 num_heads=num_heads, window_size=window_size,                                 shift_size=0 if (i % 2 == 0) else window_size // 2,                                 mlp_ratio=mlp_ratio,                                 qkv_bias=qkv_bias, qk_scale=qk_scale,                                 drop=drop, attn_drop=attn_drop,                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,                                 norm_layer=norm_layer)                                  for i in range(depth)])        # patch merging layer        if downsample is not None:            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)        else:            self.downsample = None    def forward(self, x):        for blk in self.blocks:                x = blk(x)        if self.downsample is not None:            x = self.downsample(x)        return xclass PatchEmbed(nn.Layer):    """ Image to Patch Embedding    Args:        img_size (int): Image size.  Default: 224.        patch_size (int): Patch token size. Default: 4.        in_chans (int): Number of input image channels. Default: 3.        embed_dim (int): Number of linear projection output channels. Default: 96.        norm_layer (nn.Module, optional): Normalization layer. Default: None    """    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):        super().__init__()        img_size = to_2tuple(img_size)        patch_size = to_2tuple(patch_size)        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]        self.img_size = img_size        self.patch_size = patch_size        self.patches_resolution = patches_resolution        self.num_patches = patches_resolution[0] * patches_resolution[1]        self.in_chans = in_chans        self.embed_dim = embed_dim        self.proj = nn.Conv2D(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)        if norm_layer is not None:            self.norm = norm_layer(embed_dim)        else:            self.norm = None    def forward(self, x):        B, C, H, W = x.shape        # FIXME look at relaxing size constraints        assert H == self.img_size[0] and W == self.img_size[1], \            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."        x = swapdim(self.proj(x).flatten(2), 1, 2)  # B Ph*Pw C        if self.norm is not None:            x = self.norm(x)        return x
登录后复制    

模型最终构造

浅析 Swin Transformer - 游乐网        

这一部分就是backbone的搭建了,不同backbone搭配方式也不同,这次说一下为什么倒数第二个stage要比其他三个多,因为stage0,stage1部输入的图像尺寸大,过多增加层数会造成运算增加,而在stage2输入的图像尺寸小,对运算开销小,方便提取高层语义,最后的stage3虽然输入空间维度小,但是Channel过大,会带来不小的计算开销,不如把计算资源分配给stage2,这也是ResNet经典的思想

swin tiny:[ 2, 2, 6, 2 ]swin samll:[ 2, 2, 18, 2 ]swin base: [ 2, 2, 18, 2 ]swin large:[ 2, 2, 18, 2 ]In [8]
class SwinTransformer(nn.Layer):    """ Swin Transformer        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -          https://arxiv.org/pdf/2103.14030    Args:        img_size (int | tuple(int)): Input image size. Default 224        patch_size (int | tuple(int)): Patch size. Default: 4        in_chans (int): Number of input image channels. Default: 3        num_classes (int): Number of classes for classification head. Default: 1000        embed_dim (int): Patch embedding dimension. Default: 96        depths (tuple(int)): Depth of each Swin Transformer layer.        num_heads (tuple(int)): Number of attention heads in different layers.        window_size (int): Window size. Default: 7        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None        drop_rate (float): Dropout rate. Default: 0        attn_drop_rate (float): Attention dropout rate. Default: 0        drop_path_rate (float): Stochastic depth rate. Default: 0.1        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False        patch_norm (bool): If True, add normalization after patch embedding. Default: True        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False    """    def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,                 embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],                 window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,                 **kwargs):        super().__init__()        self.num_classes = num_classes        self.num_layers = len(depths)        self.embed_dim = embed_dim        self.ape = ape        self.patch_norm = patch_norm        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))        self.mlp_ratio = mlp_ratio        # split image into non-overlapping patches        self.patch_embed = PatchEmbed(            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,            norm_layer=norm_layer if self.patch_norm else None)        num_patches = self.patch_embed.num_patches        patches_resolution = self.patch_embed.patches_resolution        self.patches_resolution = patches_resolution        # absolute position embedding        if self.ape:            self.absolute_pos_embed = self.create_parameter(shape=(1, num_patches, embed_dim),default_initializer=nn.initializer.Constant(value=0))            self.add_parameter("absolute_pos_embed", self.absolute_pos_embed)        self.pos_drop = nn.Dropout(p=drop_rate)        # stochastic depth        dpr = [x for x in paddle.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule        # build layers        self.layers = nn.LayerList()        for i_layer in range(self.num_layers):            layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),                               input_resolution=(patches_resolution[0] // (2 ** i_layer),                                                 patches_resolution[1] // (2 ** i_layer)),                               depth=depths[i_layer],                               num_heads=num_heads[i_layer],                               window_size=window_size,                               mlp_ratio=self.mlp_ratio,                               qkv_bias=qkv_bias, qk_scale=qk_scale,                               drop=drop_rate, attn_drop=attn_drop_rate,                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],                               norm_layer=norm_layer,                               downsample=PatchMerging if (i_layer < self.num_layers - 1) else None                               )            self.layers.append(layer)        self.norm = norm_layer(self.num_features)        self.avgpool = nn.AdaptiveAvgPool1D(1)        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else Identity()    def forward_features(self, x):        x = self.patch_embed(x)        if self.ape:            x = x + self.absolute_pos_embed        x = self.pos_drop(x)        for layer in self.layers:            x = layer(x)        x = self.norm(x)  # B L C        x = self.avgpool(swapdim(x,1, 2))  # B C 1        x = paddle.flatten(x, 1)        return x    def forward(self, x):        x = self.forward_features(x)        x = self.head(x)        return x
登录后复制    

模型大小定义

最新发布模型如下

浅析 Swin Transformer - 游乐网        

In [9]
def swin_tiny_window7_224(**kwargs):    model = SwinTransformer(img_size = 224,                            embed_dim = 96,                            depths = [ 2, 2, 6, 2 ],                            num_heads = [ 3, 6, 12, 24 ],                            window_size = 7,                            drop_path_rate=0.2,                            **kwargs)    return modeldef swin_small_window7_224(**kwargs):    model = SwinTransformer(img_size = 224,                            embed_dim = 96,                            depths = [ 2, 2, 18, 2 ],                            num_heads = [ 3, 6, 12, 24 ],                            window_size = 7,                            drop_path_rate=0.3,                            **kwargs)    return modeldef swin_base_window7_224(**kwargs):    model = SwinTransformer(img_size = 224,                            embed_dim = 128,                            depths = [ 2, 2, 18, 2 ],                            num_heads = [ 4, 8, 16, 32 ],                            window_size = 7,                            drop_path_rate=0.5,                            **kwargs)    return modeldef swin_large_window7_224(**kwargs):    model = SwinTransformer(img_size = 224,                            embed_dim = 192,                            depths = [ 2, 2, 18, 2 ],                            num_heads = [ 6, 12, 24, 48 ],                            window_size = 7,                            **kwargs)    return modeldef swin_base_window12_384(**kwargs):    model = SwinTransformer(img_size = 384,                            embed_dim = 128,                            depths = [ 2, 2, 18, 2 ],                            num_heads = [ 4, 8, 16, 32 ],                            window_size = 12,                            **kwargs)    return modeldef swin_large_window12_384(**kwargs):    model = SwinTransformer(img_size = 384,                            embed_dim = 192,                            depths = [ 2, 2, 18, 2 ],                            num_heads = [ 6, 12, 24, 48 ],                            window_size = 12,                            **kwargs)    return model
登录后复制    In [10]
model = swin_tiny_window7_224(num_classes = 10)model = paddle.Model(model)model.summary((1,3,224,224))
登录后复制        
-----------------------------------------------------------------------------------     Layer (type)           Input Shape          Output Shape         Param #    ===================================================================================       Conv2D-1          [[1, 3, 224, 224]]    [1, 96, 56, 56]         4,704           LayerNorm-1         [[1, 3136, 96]]       [1, 3136, 96]           192           PatchEmbed-1        [[1, 3, 224, 224]]     [1, 3136, 96]            0              Dropout-1          [[1, 3136, 96]]       [1, 3136, 96]            0             LayerNorm-2         [[1, 3136, 96]]       [1, 3136, 96]           192             Linear-1            [[64, 49, 96]]       [64, 49, 288]         27,936            Softmax-1         [[64, 3, 49, 49]]     [64, 3, 49, 49]           0              Dropout-2         [[64, 3, 49, 49]]     [64, 3, 49, 49]           0              Linear-2            [[64, 49, 96]]        [64, 49, 96]          9,312            Dropout-3           [[64, 49, 96]]        [64, 49, 96]            0          WindowAttention-1       [[64, 49, 96]]        [64, 49, 96]           507            Identity-1          [[1, 3136, 96]]       [1, 3136, 96]            0             LayerNorm-3         [[1, 3136, 96]]       [1, 3136, 96]           192             Linear-3           [[1, 3136, 96]]       [1, 3136, 384]        37,248             GELU-1            [[1, 3136, 384]]      [1, 3136, 384]           0              Dropout-4          [[1, 3136, 96]]       [1, 3136, 96]            0              Linear-4           [[1, 3136, 384]]      [1, 3136, 96]         36,960              Mlp-1            [[1, 3136, 96]]       [1, 3136, 96]            0       SwinTransformerBlock-1    [[1, 3136, 96]]       [1, 3136, 96]            0             LayerNorm-4         [[1, 3136, 96]]       [1, 3136, 96]           192             Linear-5            [[64, 49, 96]]       [64, 49, 288]         27,936            Softmax-2         [[64, 3, 49, 49]]     [64, 3, 49, 49]           0              Dropout-5         [[64, 3, 49, 49]]     [64, 3, 49, 49]           0              Linear-6            [[64, 49, 96]]        [64, 49, 96]          9,312            Dropout-6           [[64, 49, 96]]        [64, 49, 96]            0          WindowAttention-2       [[64, 49, 96]]        [64, 49, 96]           507            DropPath-1          [[1, 3136, 96]]       [1, 3136, 96]            0             LayerNorm-5         [[1, 3136, 96]]       [1, 3136, 96]           192             Linear-7           [[1, 3136, 96]]       [1, 3136, 384]        37,248             GELU-2            [[1, 3136, 384]]      [1, 3136, 384]           0              Dropout-7          [[1, 3136, 96]]       [1, 3136, 96]            0              Linear-8           [[1, 3136, 384]]      [1, 3136, 96]         36,960              Mlp-2            [[1, 3136, 96]]       [1, 3136, 96]            0       SwinTransformerBlock-2    [[1, 3136, 96]]       [1, 3136, 96]            0             LayerNorm-6         [[1, 784, 384]]       [1, 784, 384]           768             Linear-9           [[1, 784, 384]]       [1, 784, 192]         73,728         PatchMerging-1        [[1, 3136, 96]]       [1, 784, 192]            0            BasicLayer-1         [[1, 3136, 96]]       [1, 784, 192]            0             LayerNorm-7         [[1, 784, 192]]       [1, 784, 192]           384             Linear-10          [[16, 49, 192]]       [16, 49, 576]         111,168           Softmax-3         [[16, 6, 49, 49]]     [16, 6, 49, 49]           0              Dropout-8         [[16, 6, 49, 49]]     [16, 6, 49, 49]           0              Linear-11          [[16, 49, 192]]       [16, 49, 192]         37,056            Dropout-9          [[16, 49, 192]]       [16, 49, 192]            0          WindowAttention-3      [[16, 49, 192]]       [16, 49, 192]          1,014           DropPath-2          [[1, 784, 192]]       [1, 784, 192]            0             LayerNorm-8         [[1, 784, 192]]       [1, 784, 192]           384             Linear-12          [[1, 784, 192]]       [1, 784, 768]         148,224            GELU-3            [[1, 784, 768]]       [1, 784, 768]            0             Dropout-10          [[1, 784, 192]]       [1, 784, 192]            0              Linear-13          [[1, 784, 768]]       [1, 784, 192]         147,648             Mlp-3            [[1, 784, 192]]       [1, 784, 192]            0       SwinTransformerBlock-3    [[1, 784, 192]]       [1, 784, 192]            0             LayerNorm-9         [[1, 784, 192]]       [1, 784, 192]           384             Linear-14          [[16, 49, 192]]       [16, 49, 576]         111,168           Softmax-4         [[16, 6, 49, 49]]     [16, 6, 49, 49]           0             Dropout-11         [[16, 6, 49, 49]]     [16, 6, 49, 49]           0              Linear-15          [[16, 49, 192]]       [16, 49, 192]         37,056           Dropout-12          [[16, 49, 192]]       [16, 49, 192]            0          WindowAttention-4      [[16, 49, 192]]       [16, 49, 192]          1,014           DropPath-3          [[1, 784, 192]]       [1, 784, 192]            0            LayerNorm-10         [[1, 784, 192]]       [1, 784, 192]           384             Linear-16          [[1, 784, 192]]       [1, 784, 768]         148,224            GELU-4            [[1, 784, 768]]       [1, 784, 768]            0             Dropout-13          [[1, 784, 192]]       [1, 784, 192]            0              Linear-17          [[1, 784, 768]]       [1, 784, 192]         147,648             Mlp-4            [[1, 784, 192]]       [1, 784, 192]            0       SwinTransformerBlock-4    [[1, 784, 192]]       [1, 784, 192]            0            LayerNorm-11         [[1, 196, 768]]       [1, 196, 768]          1,536            Linear-18          [[1, 196, 768]]       [1, 196, 384]         294,912        PatchMerging-2        [[1, 784, 192]]       [1, 196, 384]            0            BasicLayer-2         [[1, 784, 192]]       [1, 196, 384]            0            LayerNorm-12         [[1, 196, 384]]       [1, 196, 384]           768             Linear-19           [[4, 49, 384]]       [4, 49, 1152]         443,520           Softmax-5         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0             Dropout-14         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0              Linear-20           [[4, 49, 384]]        [4, 49, 384]         147,840          Dropout-15           [[4, 49, 384]]        [4, 49, 384]            0          WindowAttention-5       [[4, 49, 384]]        [4, 49, 384]          2,028           DropPath-4          [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-13         [[1, 196, 384]]       [1, 196, 384]           768             Linear-21          [[1, 196, 384]]       [1, 196, 1536]        591,360            GELU-5            [[1, 196, 1536]]      [1, 196, 1536]           0             Dropout-16          [[1, 196, 384]]       [1, 196, 384]            0              Linear-22          [[1, 196, 1536]]      [1, 196, 384]         590,208             Mlp-5            [[1, 196, 384]]       [1, 196, 384]            0       SwinTransformerBlock-5    [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-14         [[1, 196, 384]]       [1, 196, 384]           768             Linear-23           [[4, 49, 384]]       [4, 49, 1152]         443,520           Softmax-6         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0             Dropout-17         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0              Linear-24           [[4, 49, 384]]        [4, 49, 384]         147,840          Dropout-18           [[4, 49, 384]]        [4, 49, 384]            0          WindowAttention-6       [[4, 49, 384]]        [4, 49, 384]          2,028           DropPath-5          [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-15         [[1, 196, 384]]       [1, 196, 384]           768             Linear-25          [[1, 196, 384]]       [1, 196, 1536]        591,360            GELU-6            [[1, 196, 1536]]      [1, 196, 1536]           0             Dropout-19          [[1, 196, 384]]       [1, 196, 384]            0              Linear-26          [[1, 196, 1536]]      [1, 196, 384]         590,208             Mlp-6            [[1, 196, 384]]       [1, 196, 384]            0       SwinTransformerBlock-6    [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-16         [[1, 196, 384]]       [1, 196, 384]           768             Linear-27           [[4, 49, 384]]       [4, 49, 1152]         443,520           Softmax-7         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0             Dropout-20         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0              Linear-28           [[4, 49, 384]]        [4, 49, 384]         147,840          Dropout-21           [[4, 49, 384]]        [4, 49, 384]            0          WindowAttention-7       [[4, 49, 384]]        [4, 49, 384]          2,028           DropPath-6          [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-17         [[1, 196, 384]]       [1, 196, 384]           768             Linear-29          [[1, 196, 384]]       [1, 196, 1536]        591,360            GELU-7            [[1, 196, 1536]]      [1, 196, 1536]           0             Dropout-22          [[1, 196, 384]]       [1, 196, 384]            0              Linear-30          [[1, 196, 1536]]      [1, 196, 384]         590,208             Mlp-7            [[1, 196, 384]]       [1, 196, 384]            0       SwinTransformerBlock-7    [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-18         [[1, 196, 384]]       [1, 196, 384]           768             Linear-31           [[4, 49, 384]]       [4, 49, 1152]         443,520           Softmax-8         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0             Dropout-23         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0              Linear-32           [[4, 49, 384]]        [4, 49, 384]         147,840          Dropout-24           [[4, 49, 384]]        [4, 49, 384]            0          WindowAttention-8       [[4, 49, 384]]        [4, 49, 384]          2,028           DropPath-7          [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-19         [[1, 196, 384]]       [1, 196, 384]           768             Linear-33          [[1, 196, 384]]       [1, 196, 1536]        591,360            GELU-8            [[1, 196, 1536]]      [1, 196, 1536]           0             Dropout-25          [[1, 196, 384]]       [1, 196, 384]            0              Linear-34          [[1, 196, 1536]]      [1, 196, 384]         590,208             Mlp-8            [[1, 196, 384]]       [1, 196, 384]            0       SwinTransformerBlock-8    [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-20         [[1, 196, 384]]       [1, 196, 384]           768             Linear-35           [[4, 49, 384]]       [4, 49, 1152]         443,520           Softmax-9         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0             Dropout-26         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0              Linear-36           [[4, 49, 384]]        [4, 49, 384]         147,840          Dropout-27           [[4, 49, 384]]        [4, 49, 384]            0          WindowAttention-9       [[4, 49, 384]]        [4, 49, 384]          2,028           DropPath-8          [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-21         [[1, 196, 384]]       [1, 196, 384]           768             Linear-37          [[1, 196, 384]]       [1, 196, 1536]        591,360            GELU-9            [[1, 196, 1536]]      [1, 196, 1536]           0             Dropout-28          [[1, 196, 384]]       [1, 196, 384]            0              Linear-38          [[1, 196, 1536]]      [1, 196, 384]         590,208             Mlp-9            [[1, 196, 384]]       [1, 196, 384]            0       SwinTransformerBlock-9    [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-22         [[1, 196, 384]]       [1, 196, 384]           768             Linear-39           [[4, 49, 384]]       [4, 49, 1152]         443,520          Softmax-10         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0             Dropout-29         [[4, 12, 49, 49]]     [4, 12, 49, 49]           0              Linear-40           [[4, 49, 384]]        [4, 49, 384]         147,840          Dropout-30           [[4, 49, 384]]        [4, 49, 384]            0         WindowAttention-10       [[4, 49, 384]]        [4, 49, 384]          2,028           DropPath-9          [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-23         [[1, 196, 384]]       [1, 196, 384]           768             Linear-41          [[1, 196, 384]]       [1, 196, 1536]        591,360            GELU-10           [[1, 196, 1536]]      [1, 196, 1536]           0             Dropout-31          [[1, 196, 384]]       [1, 196, 384]            0              Linear-42          [[1, 196, 1536]]      [1, 196, 384]         590,208            Mlp-10            [[1, 196, 384]]       [1, 196, 384]            0       SwinTransformerBlock-10   [[1, 196, 384]]       [1, 196, 384]            0            LayerNorm-24         [[1, 49, 1536]]       [1, 49, 1536]          3,072            Linear-43          [[1, 49, 1536]]        [1, 49, 768]        1,179,648       PatchMerging-3        [[1, 196, 384]]        [1, 49, 768]            0            BasicLayer-3         [[1, 196, 384]]        [1, 49, 768]            0            LayerNorm-25          [[1, 49, 768]]        [1, 49, 768]          1,536            Linear-44           [[1, 49, 768]]       [1, 49, 2304]        1,771,776         Softmax-11         [[1, 24, 49, 49]]     [1, 24, 49, 49]           0             Dropout-32         [[1, 24, 49, 49]]     [1, 24, 49, 49]           0              Linear-45           [[1, 49, 768]]        [1, 49, 768]         590,592          Dropout-33           [[1, 49, 768]]        [1, 49, 768]            0         WindowAttention-11       [[1, 49, 768]]        [1, 49, 768]          4,056           DropPath-10          [[1, 49, 768]]        [1, 49, 768]            0            LayerNorm-26          [[1, 49, 768]]        [1, 49, 768]          1,536            Linear-46           [[1, 49, 768]]       [1, 49, 3072]        2,362,368           GELU-11           [[1, 49, 3072]]       [1, 49, 3072]            0             Dropout-34           [[1, 49, 768]]        [1, 49, 768]            0              Linear-47          [[1, 49, 3072]]        [1, 49, 768]        2,360,064           Mlp-11             [[1, 49, 768]]        [1, 49, 768]            0       SwinTransformerBlock-11    [[1, 49, 768]]        [1, 49, 768]            0            LayerNorm-27          [[1, 49, 768]]        [1, 49, 768]          1,536            Linear-48           [[1, 49, 768]]       [1, 49, 2304]        1,771,776         Softmax-12         [[1, 24, 49, 49]]     [1, 24, 49, 49]           0             Dropout-35         [[1, 24, 49, 49]]     [1, 24, 49, 49]           0              Linear-49           [[1, 49, 768]]        [1, 49, 768]         590,592          Dropout-36           [[1, 49, 768]]        [1, 49, 768]            0         WindowAttention-12       [[1, 49, 768]]        [1, 49, 768]          4,056           DropPath-11          [[1, 49, 768]]        [1, 49, 768]            0            LayerNorm-28          [[1, 49, 768]]        [1, 49, 768]          1,536            Linear-50           [[1, 49, 768]]       [1, 49, 3072]        2,362,368           GELU-12           [[1, 49, 3072]]       [1, 49, 3072]            0             Dropout-37           [[1, 49, 768]]        [1, 49, 768]            0              Linear-51          [[1, 49, 3072]]        [1, 49, 768]        2,360,064           Mlp-12             [[1, 49, 768]]        [1, 49, 768]            0       SwinTransformerBlock-12    [[1, 49, 768]]        [1, 49, 768]            0            BasicLayer-4          [[1, 49, 768]]        [1, 49, 768]            0            LayerNorm-29          [[1, 49, 768]]        [1, 49, 768]          1,536       AdaptiveAvgPool1D-1      [[1, 768, 49]]        [1, 768, 1]             0              Linear-52             [[1, 768]]            [1, 10]             7,690     ===================================================================================Total params: 27,527,044Trainable params: 27,527,044Non-trainable params: 0-----------------------------------------------------------------------------------Input size (MB): 0.57Forward/backward pass size (MB): 282.34Params size (MB): 105.01Estimated Total Size (MB): 387.92-----------------------------------------------------------------------------------
登录后复制        
{'total_params': 27527044, 'trainable_params': 27527044}
登录后复制                

用Cifar10训练

重要的事情说三遍:batch_size 一定要调小!调小!调小!不然会 cuda error (9)

transformer网络拟合数据没有传统CNN快读者可以自由调试网络预训练模型可以去 Swin Transformer:层次化视觉 Transformer 这里要赞扬一下大佬的PPIM~推荐大家试一下In [24]
import paddle.vision.transforms as Tfrom paddle.vision.datasets import Cifar10#数据准备transform = T.Compose([    T.Resize(size=(224,224)),    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225],data_format='HWC'),    T.ToTensor()])train_dataset = Cifar10(mode='train', transform=transform)val_dataset = Cifar10(mode='test',  transform=transform)model.prepare(optimizer=paddle.optimizer.SGD(learning_rate=0.001,parameters=model.parameters()),              loss=paddle.nn.CrossEntropyLoss(),              metrics=paddle.metric.Accuracy())vdl_callback = paddle.callbacks.VisualDL(log_dir='log') # 训练可视化model.fit(    train_data=train_dataset,     eval_data=val_dataset,     batch_size=8,     epochs=10,     verbose=1,     callbacks=vdl_callback # 训练可视化)
登录后复制    

浅析 Swin Transformer - 游乐网 浅析 Swin Transformer - 游乐网        

我们可以看到该模型收敛相比传统CNN收敛十分慢,一个epoch需要15 min左右收敛图像几乎呈直线增长,不同于传统CNN先快后慢由于给的算力只有8小时,最高收敛到acc = 0.75左右,算力多的伙伴可以尝试一下已在最新torch代码测试,loss和上述差不多进一步说明传统CNN在这一方面(收敛性)强于transformer,如果有能力的同学可以加更多的identity魔改网络增加模型收敛性

热门推荐

更多

热门文章

更多

首页  返回顶部

本站所有软件都由网友上传,如有侵犯您的版权,请发邮件youleyoucom@outlook.com