当前位置: 首页 > AI > 文章内容页

【2022 CCF BDCI 基于文心CV大模型的智慧城市视觉多任务识别】第5名

时间:2025-07-29    作者:游乐小编    

本文介绍一种基于PaddleSlim的GPNAS集成模型预测rank的方法。采用顺序和one-hot编码保留先验信息,用inverse-sigmoid转换rank标签分布。模型由多个子回归器经GPNAS集成,针对每个任务选子回归器参数和种类,用贝叶斯优化选GPNAS参数,还优化了GPNAS核函数和初始化方法,给出了实现流程、代码及结果。

【2024 CCF BDCI 基于文心CV大模型的智慧城市视觉多任务识别】第5名 - 游乐网

整体介绍

参考最新baseline和NAS的方式,使用以PaddleSlim的GPNAS为基础的集成模型进行rank的预测。

  • 数据编码:通常而言网络模型的性能和深度有较强的相关性,这一先验在大多数的任务中得到了验证,但对某些任务而言则更看重其余的参数变化。因而数据编码部分我们使用了顺序编码和one-hot编码两种表达方式,来保留上述先验信息,尽可能降低问题的复杂度。rank标签通过inverse-sigmoid进行数据分布转换,尝试了(1)直接回归rank值和(2)回归score,进行排序得到rank两种方式。

  • 模型选择:模型整体结构为多个子回归器通过GPNAS进行集成。对于每一个任务,我们验证了各个子回归器的性能,以选择所进行GPNAS集成的子回归器参数和种类。同时,对于每个任务,利用贝叶斯优化来选择每个任务对应的GPNAS参数。 对于GPNAS本身,我们同样对核函数的设计和初始化方法进行了优化和尝试。

大致流程如下

【2024 CCF BDCI 基于文心CV大模型的智慧城市视觉多任务识别】第5名 - 游乐网

环境依赖安装

In [1]

!pip install scikit-learn==1.0.2 -i https://mirror.baidu.com/pypi/simple/!pip install lightgbm==3.3.2 -i https://mirror.baidu.com/pypi/simple/!pip install xgboost==1.6.2 -i https://mirror.baidu.com/pypi/simple/!pip install catboost==1.1 -i https://mirror.baidu.com/pypi/simple/!!pip install bayesian-optimization==1.3.1 -i https://mirror.baidu.com/pypi/simple/

Looking in indexes: https://mirror.baidu.com/pypi/simple/Requirement already satisfied: scikit-learn==1.0.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (1.0.2)Requirement already satisfied: scipy>=1.1.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn==1.0.2) (1.3.0)Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn==1.0.2) (3.1.0)Requirement already satisfied: numpy>=1.14.6 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn==1.0.2) (1.19.5)Requirement already satisfied: joblib>=0.11 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn==1.0.2) (0.14.1)[notice] A new release of pip available: 22.1.2 -> 22.3.1[notice] To update, run: pip install --upgrade pipLooking in indexes: https://mirror.baidu.com/pypi/simple/Requirement already satisfied: lightgbm==3.3.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (3.3.2)Requirement already satisfied: wheel in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from lightgbm==3.3.2) (0.33.6)Requirement already satisfied: scipy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from lightgbm==3.3.2) (1.3.0)Requirement already satisfied: numpy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from lightgbm==3.3.2) (1.19.5)Requirement already satisfied: scikit-learn!=0.22.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from lightgbm==3.3.2) (1.0.2)Requirement already satisfied: joblib>=0.11 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn!=0.22.0->lightgbm==3.3.2) (0.14.1)Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn!=0.22.0->lightgbm==3.3.2) (3.1.0)[notice] A new release of pip available: 22.1.2 -> 22.3.1[notice] To update, run: pip install --upgrade pipLooking in indexes: https://mirror.baidu.com/pypi/simple/Requirement already satisfied: xgboost==1.6.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (1.6.2)Requirement already satisfied: scipy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from xgboost==1.6.2) (1.3.0)Requirement already satisfied: numpy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from xgboost==1.6.2) (1.19.5)[notice] A new release of pip available: 22.1.2 -> 22.3.1[notice] To update, run: pip install --upgrade pipLooking in indexes: https://mirror.baidu.com/pypi/simple/Requirement already satisfied: catboost==1.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (1.1)Requirement already satisfied: plotly in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from catboost==1.1) (5.8.0)Requirement already satisfied: pandas>=0.24.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from catboost==1.1) (1.1.5)Requirement already satisfied: scipy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from catboost==1.1) (1.3.0)Requirement already satisfied: six in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from catboost==1.1) (1.16.0)Requirement already satisfied: matplotlib in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from catboost==1.1) (2.2.3)Requirement already satisfied: numpy>=1.16.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from catboost==1.1) (1.19.5)Requirement already satisfied: graphviz in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from catboost==1.1) (0.13)Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pandas>=0.24.0->catboost==1.1) (2.8.2)Requirement already satisfied: pytz>=2017.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pandas>=0.24.0->catboost==1.1) (2019.3)Requirement already satisfied: cycler>=0.10 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->catboost==1.1) (0.10.0)Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->catboost==1.1) (3.0.9)Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->catboost==1.1) (1.1.0)Requirement already satisfied: tenacity>=6.2.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from plotly->catboost==1.1) (8.0.1)Requirement already satisfied: setuptools in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->catboost==1.1) (41.4.0)[notice] A new release of pip available: 22.1.2 -> 22.3.1[notice] To update, run: pip install --upgrade pip

['Looking in indexes: https://mirror.baidu.com/pypi/simple/', 'Requirement already satisfied: bayesian-optimization==1.3.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (1.3.1)', 'Requirement already satisfied: scipy>=1.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bayesian-optimization==1.3.1) (1.3.0)', 'Requirement already satisfied: numpy>=1.9.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bayesian-optimization==1.3.1) (1.19.5)', 'Requirement already satisfied: scikit-learn>=0.18.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bayesian-optimization==1.3.1) (1.0.2)', 'Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn>=0.18.0->bayesian-optimization==1.3.1) (3.1.0)', 'Requirement already satisfied: joblib>=0.11 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn>=0.18.0->bayesian-optimization==1.3.1) (0.14.1)', '', '[notice] A new release of pip available: 22.1.2 -> 22.3.1', '[notice] To update, run: pip install --upgrade pip']

引入必要依赖

In [2]

import catboostimport lightgbmimport xgboostimport sklearnfrom sklearn import ensemblefrom sklearn.experimental import enable_hist_gradient_boostingfrom sklearn.ensemble import *from sklearn.kernel_ridge import *from sklearn.linear_model import *from sklearn.semi_supervised import *from sklearn.svm import *from sklearn.metrics import mean_squared_error, make_scorerimport numpy as npimport scipyimport copyimport jsonfrom sklearn.model_selection import cross_val_scorefrom scipy.linalg import hankel

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/sklearn/experimental/enable_hist_gradient_boosting.py:17: UserWarning: Since version 1.0, it is not needed to import enable_hist_gradient_boosting anymore. HistGradientBoostingClassifier and HistGradientBoostingRegressor are now stable and can be normally imported from sklearn.ensemble.  "Since version 1.0, "

实现过程

以PaddleSlim的GPNAS为基础进行修改作为核心模块

GPNAS源码链接:https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/nas/gp_nas.py

修改参考代码:https://aistudio.baidu.com/aistudio/projectdetail/3751972?channelType=0&channel=0

新增如下核函数

Kernel=M1,M2Kernel=∣⟨M1,M2⟩∣

Kernel=α×eM,M162+β×eM,M12Kernel=α×2e16−⟨M,M⟩+β×e12−⟨M,M⟩

初始化方式

self.w = inv(X.T*X)X.T*Y as initial mean

self.cov_w = self.hp_cov * np.linalg.inv(X.T * X)

In [3]

class GPNAS2(object):    _estimator_type = "regressor"    def __init__(self, cov_w=None, w=None, c_flag=2, m_flag=2, hp_mat=0.0000001, hp_cov=0.01, icov=1):        self.hp_mat = hp_mat        self.hp_cov = hp_cov        self.cov_w = cov_w        self.w = w        self.c_flag = c_flag        self.m_flag = m_flag        self.icov = icov    def get_params(self, deep=True):        return {            "hp_mat": self.hp_mat,            "hp_cov": self.hp_cov,            "cov_w": self.cov_w,            "w": self.w,            "c_flag": self.c_flag,            "m_flag": self.m_flag,            "icov": self.icov,        }    def set_params(self, **parameters):        for parameter, value in parameters.items():            setattr(self, parameter, value)        return self    def _get_corelation(self, mat1, mat2):        """        give two typical kernel function        Auto kernel hyperparameters estimation to be updated        """        mat_diff = abs(mat1 - mat2)        if self.c_flag == 1:            return 0.5 * np.exp(-np.dot(mat_diff, mat_diff) / 16)        elif self.c_flag == 2:            return 1 * np.exp(-np.sqrt(np.dot(mat_diff, mat_diff)) / 12)        elif self.c_flag == 3:            return np.abs(np.dot(mat1, mat2))        elif self.c_flag == 4:            return 0.7 * 1 * np.exp(-np.sqrt(np.dot(mat_diff, mat_diff)) / 12) +                    0.3 * 0.5 * np.exp(-np.dot(mat_diff, mat_diff) / 16)    def _preprocess_X(self, X):        """        preprocess of input feature/ tokens of architecture        more complicated preprocess can be added such as nonlineaer transformation        """        X = X.tolist()        p_X = copy.deepcopy(X)        for feature in p_X: feature.append(1)        return p_X    def _get_cor_mat(self, X):        """get kernel matrix"""        X = np.array(X)        l = X.shape[0]        cor_mat = []        for c_idx in range(l):            col = []            c_mat = X[c_idx].copy()            for r_idx in range(l):                r_mat = X[r_idx].copy()                temp_cor = self._get_corelation(c_mat, r_mat)                col.append(temp_cor)            cor_mat.append(col)        return np.mat(cor_mat)    def _get_cor_mat_joint(self, X, X_train):        """        get kernel matrix        """        X = np.array(X)        X_train = np.array(X_train)        l_c = X.shape[0]        l_r = X_train.shape[0]        cor_mat = []        for c_idx in range(l_c):            col = []            c_mat = X[c_idx].copy()            for r_idx in range(l_r):                r_mat = X_train[r_idx].copy()                temp_cor = self._get_corelation(c_mat, r_mat)                col.append(temp_cor)            cor_mat.append(col)        return np.mat(cor_mat)    def fit(self, X, y):        self.get_initial_mean(X[0::2], y[0::2])        self.get_initial_cov(X)        # 更新(训练)gpnas预测器超参数        self.get_posterior_mean(X[1::2], y[1::2])    def predict(self, X):        X = self._preprocess_X(X)        X = np.mat(X)        # print('beta',self.w.flatten())        return X * self.w    def get_predict(self, X):        """        get the prediction of network architecture X        """        X = self._preprocess_X(X)        X = np.mat(X)        return X * self.w    def get_predict_jiont(self, X, X_train, Y_train):        """        get the prediction of network architecture X based on X_train and Y_train        """        X = np.mat(X)        X_train = np.mat(X_train)        Y_train = np.mat(Y_train)        m_X = self.get_predict(X)        m_X_train = self.get_predict(X_train)        mat_train = self._get_cor_mat(X_train)        mat_joint = self._get_cor_mat_joint(X, X_train)        return m_X + mat_joint * np.linalg.inv(mat_train + self.hp_mat * np.eye(            X_train.shape[0])) * (Y_train.T - m_X_train)    def get_initial_mean(self, X, Y):        """        get initial mean of w        """        X = self._preprocess_X(X)        X = np.mat(X)        Y = np.mat(Y)        self.w = np.linalg.inv(X.T * X + self.hp_mat * np.eye(X.shape[                                                                  1])) * X.T * Y.T        # inv(X.T*X)X.T*Y as initial mean        print('Variance', np.var(Y - X * self.w))  # Show variance of residual then we can base this tunning self.hp_cov        return self.w    def get_initial_cov(self, X):        """        get initial coviarnce matrix of w        """        X = self._preprocess_X(X)        X = np.mat(X)        if self.icov == 1:  # use inv(X.T*X) as initial covariance            self.cov_w = self.hp_cov * np.linalg.inv(X.T * X)        elif self.icov == 0:  # use identity matrix as initial covariance            self.cov_w = self.hp_cov * np.eye(X.shape[1])        else:            assert 0, 'not available yet'        return self.cov_w    def get_posterior_mean(self, X, Y):        """        get posterior mean of w        """        X = self._preprocess_X(X)        X = np.mat(X)        Y = np.mat(Y)        cov_mat = self._get_cor_mat(X)        if self.m_flag == 1:            self.w = self.w + self.cov_w * X.T * np.linalg.inv(                np.linalg.inv(cov_mat + self.hp_mat * np.eye(X.shape[0])) + X *                self.cov_w * X.T + self.hp_mat * np.eye(X.shape[0])) * (                             Y.T - X * self.w)        else:            self.w = np.linalg.inv(X.T * np.linalg.inv(                cov_mat + self.hp_mat * np.eye(X.shape[0])) * X + np.linalg.inv(                self.cov_w + self.hp_mat * np.eye(X.shape[                                                      1])) + self.hp_mat * np.eye(X.shape[1])) * (                             X.T * np.linalg.inv(cov_mat + self.hp_mat * np.eye(                         X.shape[0])) * Y.T +                             np.linalg.inv(self.cov_w + self.hp_mat * np.eye(                                 X.shape[1])) * self.w)        return self.w    def get_posterior_cov(self, X, Y):        """        get posterior coviarnce matrix of w        """        X = self._preprocess_X(X)        X = np.mat(X)        Y = np.mat(Y)        cov_mat = self._get_cor_mat(X)        self.cov_mat = np.linalg.inv(            np.linalg.inv(X.T * cov_mat * X + self.hp_mat * np.eye(X.shape[1]))            + np.linalg.inv(self.cov_w + self.hp_mat * np.eye(X.shape[                                                                  1])) + self.hp_mat * np.eye(X.shape[1]))        return self.cov_mat

数据编码

采用两种特定的编码方式

  • 对于部分task而言,网络模型深度越大,性能一般越好,需要一种编码方式来额外体现深度信息

  • 但对于另一些task而言,网络深度和参数的影响并不明显,则采用one-hot编码

In [4]

def convert_X1(arch_str):    # Transform all the encode to [-1, 0, 1]    tmp_arch = []    for i, elm in enumerate(arch_str):        if i in [3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36]:            pass        elif elm == 'j':            tmp_arch.append(1 - 2)        elif elm == 'k':            tmp_arch.append(2 - 2)        elif elm == 'l':            tmp_arch.append(3 - 2)        elif int(elm) == 0:            tmp_arch.append(2 - 2)        else:            tmp_arch.append(int(elm) - 2)    return tmp_arch

In [5]

def convert_X2(arch_str):    tmp_arch = []    for i, elm in enumerate(arch_str):        if i in [3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36]:            pass        elif elm == 'j':            tmp_arch = tmp_arch + [1, 0, 0, 0]        elif elm == 'k':            tmp_arch = tmp_arch + [0, 1, 0, 0]        elif elm == 'l':            tmp_arch = tmp_arch + [0, 0, 1, 0]        elif int(elm) == 0:            tmp_arch = tmp_arch + [0, 0, 0, 0]        elif int(elm) == 1:            tmp_arch = tmp_arch + [1, 0, 0, 0]        elif int(elm) == 2:            tmp_arch = tmp_arch + [0, 1, 0, 0]        elif int(elm) == 3:            tmp_arch = tmp_arch + [0, 0, 1, 0]    return tmp_arch

In [6]

with open('CCF_UFO_train.json', 'r') as f:    # train_data is     # keys from 'arch1' to 'arch500'    # 'arch': 'l231131331121121331111211121331321321', j-10, k-11, l-12    # l 231 131 331 121 121 331 111 211 121 331 321 321    # k 111 221 321 131 331 321 311 321 311 311 321 000    # j 221 311 211 121 321 321 111 331 221 311 000 000    train_data = json.load(f)

In [7]

with open('CCF_UFO_test.json', 'r') as f:    test_data = json.load(f)

In [8]

test_arch_list1, test_arch_list2 = [], []for key in test_data.keys():    test_arch = convert_X1(test_data[key]['arch'])    test_arch_list1.append(test_arch)for key in test_data.keys():    test_arch = convert_X2(test_data[key]['arch'])    test_arch_list2.append(test_arch)#encoding methods for training datatrain_list = [[], [], [], [], [], [], [], []]arch_list_train1, arch_list_train2 = [], []name_list = ['cplfw_rank', 'market1501_rank', 'dukemtmc_rank', 'msmt17_rank', 'veri_rank', 'vehicleid_rank',             'veriwild_rank', 'sop_rank']for key in train_data.keys():    for idx, name in enumerate(name_list):        train_list[idx].append(train_data[key][name])    xx = train_data[key]['arch']    arch_list_train1.append(convert_X1(xx))for key in train_data.keys():    xx = train_data[key]['arch']    arch_list_train2.append(convert_X2(xx))

标签编码

直接预测原始的rank标签效果不好,通过inverse-sigmoid更改标签分布

In [9]

Y_all0 = np.array(train_list)  # shape: 8x500Y_all = np.log((Y_all0 + 1) / (500 - Y_all0))

超参数设置

对每个task使用不同的学习率,回归器参数等等

同时每个task有一个特定的GPNAS来集成各个模块特征

In [10]

max_iter = [10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000]learning_rate = [0.004, 0.038, 0.035, 0.03, 0.025, 0.01, 0.03, 0.01]max_depth = [1, 3, 2, 2, 2, 3, 1, 3]max_depth2 = [1, 1, 1, 1, 1, 1, 1, 1]cv = [5, 10, 10, 10, 5, 5, 4, 5]list_est = []model_GBRT, model_HISTGB, model_CATGB, model_LIGHTGB, model_XGB, model_GBRT2, model_CATGB2 = [], [], [], [], [], [], []for i in range(8):    params_GBRT = {"n_estimators": max_iter[i],                   "max_depth": max_depth[i],                   "subsample": .8,                   "learning_rate": learning_rate[i],                   "loss": 'huber',                   "max_features": 'sqrt',                   "random_state": 1,                   }    model_GBRT.append(ensemble.GradientBoostingRegressor(**params_GBRT))    params_HISTGB = {        "max_depth": max_depth2[i],        "max_iter": max_iter[i],        "learning_rate": learning_rate[i],        "loss": 'squared_error',        "max_leaf_nodes": 31,        "min_samples_leaf": 5,        "l2_regularization": 5,        "random_state": 1,    }    model_HISTGB.append(HistGradientBoostingRegressor(**params_HISTGB))    model_CATGB.append(catboost.CatBoostRegressor(iterations=max_iter[i],                                                  learning_rate=learning_rate[i],                                                  depth=max_depth[i],                                                  silent=True,                                                  task_type="CPU",                                                  loss_function='RMSE',                                                  eval_metric='RMSE',                                                  random_seed=1,                                                  od_type='Iter',                                                  metric_period=75,                                                  od_wait=100,                                                  ))    model_LIGHTGB.append(lightgbm.LGBMRegressor(boosting_type='gbdt', learning_rate=learning_rate[i], num_leaves=31,                                                max_depth=max_depth2[i], alpha=0.1, n_estimators=max_iter[i],                                                random_state=1))    model_XGB.append(xgboost.XGBRegressor(learning_rate=learning_rate[i], tree_method='auto',                                          max_depth=max_depth2[i], alpha=0.8, n_estimators=max_iter[i], random_state=1))    params_GBRT2 = {"n_estimators": max_iter[i],                    "max_depth": max_depth[i],                    "subsample": .8,                    "learning_rate": learning_rate[i],                    "loss": 'squared_error',                    "max_features": 'log2',                    "random_state": 1,                    }    model_GBRT2.append(ensemble.GradientBoostingRegressor(**params_GBRT2))    model_CATGB2.append(catboost.CatBoostRegressor(iterations=max_iter[i],                                                   learning_rate=learning_rate[i],                                                   depth=max_depth[i],                                                   silent=True,                                                   task_type="CPU",                                                   loss_function='Huber:delta=2',                                                   eval_metric='Huber:delta=2',                                                   random_seed=1,                                                   od_type='Iter',                                                   metric_period=75,                                                   od_wait=100,                                                   l2_leaf_reg=1,                                                   subsample=0.8,                                                   ))

不同的task使用不同的子回归器,且各自参数不同

  • 如 task1 使用 GBRT HISTGB CATGB LIGHTGB XGB GBRT2 CATGB2

  • task2 使用 GBRT CATGB LIGHTGB XGB GBRT2 CATGB2

In [11]

# Task 1list_est.append([    ('GBRT', model_GBRT[0]),    ('HISTGB', model_HISTGB[0]),    ('CATGB', model_CATGB[0]),    ('LIGHTGB', model_LIGHTGB[0]),    ('XGB', model_XGB[0]),    ('GBRT2', model_GBRT2[0]),    ('CATGB2', model_CATGB2[0]),])# Task 2list_est.append([    ('GBRT', model_GBRT[1]),    ('CATGB', model_CATGB[1]),    ('LIGHTGB', model_LIGHTGB[1]),    ('XGB', model_XGB[1]),    ('GBRT2', model_GBRT2[1]),    ('CATGB2', model_CATGB2[1]),])# Task 3list_est.append([    ('GBRT', model_GBRT[2]),    ('HISTGB', model_HISTGB[2]),    ('CATGB', model_CATGB[2]),    ('LIGHTGB', model_LIGHTGB[2]),    ('XGB', model_XGB[2]),    ('CATGB2', model_CATGB2[2]),])# Task 4list_est.append([    ('GBRT', model_GBRT[3]),    ('HISTGB', model_HISTGB[3]),    ('CATGB', model_CATGB[3]),    ('LIGHTGB', model_LIGHTGB[3]),    ('XGB', model_XGB[3]),    ('GBRT2', model_GBRT2[3]),    ('CATGB2', model_CATGB2[3]),])# Task 5list_est.append([    ('GBRT', model_GBRT[4]),    ('HISTGB', model_HISTGB[4]),    ('CATGB', model_CATGB[4]),    ('LIGHTGB', model_LIGHTGB[4]),    ('XGB', model_XGB[4]),    ('CATGB2', model_CATGB2[4]),])# Task 6list_est.append([    ('HISTGB', model_HISTGB[5]),    ('CATGB', model_CATGB[5]),    ('LIGHTGB', model_LIGHTGB[5]),    ('XGB', model_XGB[5]),    ('GBRT2', model_GBRT2[5]),    ('CATGB2', model_CATGB2[5]),])# Task 7list_est.append([    ('GBRT', model_GBRT[6]),    ('HISTGB', model_HISTGB[6]),    ('CATGB', model_CATGB[6]),    ('LIGHTGB', model_LIGHTGB[6]),    ('XGB', model_XGB[6]),    ('CATGB2', model_CATGB2[6]),])# Task 8list_est.append([    ('GBRT', model_GBRT[7]),    ('HISTGB', model_HISTGB[7]),    ('CATGB', model_CATGB[7]),    ('LIGHTGB', model_LIGHTGB[7]),    ('XGB', model_XGB[7]),    ('GBRT2', model_GBRT2[7]),    ('CATGB2', model_CATGB2[7]),])

各任务对应的GPNAS

In [12]

gp_est = [    GPNAS2(c_flag=1, m_flag=1, hp_mat=0.07, hp_cov=0.04, icov=0),  # Task 1    GPNAS2(c_flag=2, m_flag=2, hp_mat=0.5, hp_cov=3, icov=1),  # Task 2    GPNAS2(c_flag=1, m_flag=2, hp_mat=0.3, hp_cov=2.0, icov=0),  # Task 3    GPNAS2(c_flag=1, m_flag=2, hp_mat=0.5, hp_cov=0.1, icov=1),  # Task 4    GPNAS2(c_flag=1, m_flag=2, hp_mat=0.4, hp_cov=0.5, icov=0),  # Task 5    GPNAS2(c_flag=1, m_flag=2, hp_mat=0.1, hp_cov=0.01, icov=0),  # Task 6    GPNAS2(c_flag=2, m_flag=2, hp_mat=0.01, hp_cov=0.5, icov=1),  # Task 7    GPNAS2(c_flag=1, m_flag=2, hp_mat=0.47, hp_cov=2, icov=1),  # Task 8]

训练预测方式1

对应AB榜最优结果

In [13]

# encode 1X_train_k1 = np.array(arch_list_train1)X_val1 = np.array(test_arch_list1)rank_all1 = []for i in [0, 1, 2, 3, 4, 5, 7]:    print('No: ', i)    # stack different regressor by GPNAS with cross validation    model_final = StackingRegressor(estimators=list_est[i],                                    final_estimator=gp_est[i],                                    passthrough=False, cv=cv[i], n_jobs=4)    Y_train_k = Y_all[i]    model_final.fit(X_train_k1, Y_train_k)    zz = np.round((X_val1.shape[0] - 1) / (1 + np.exp(-1 * model_final.predict(X_val1))) - 1)  # 标签解码    rank_all1.append(zz)# encode 2X_train_k2 = np.array(arch_list_train2)X_val2 = np.array(test_arch_list2)rank_all2 = []for i in [6]:    print('No: ', i)    # stack different regressor by GPNAS with cross validation    model_final = StackingRegressor(estimators=list_est[i],                                    final_estimator=gp_est[i],                                    passthrough=False, cv=cv[i], n_jobs=4)    Y_train_k = Y_all[i]    model_final.fit(X_train_k2, Y_train_k)    zz = np.round((X_val2.shape[0] + 1) / (1 + np.exp(-1 * model_final.predict(X_val2))) - 1)  # 标签解码    rank_all2.append(zz)

No:  0

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.  "timeout or by a memory leak.", UserWarning

Variance 3.350329103751692No:  1

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.  "timeout or by a memory leak.", UserWarning

Variance 6.049711124197105No:  2

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.  "timeout or by a memory leak.", UserWarning

Variance 6.008238879323918No:  3

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.  "timeout or by a memory leak.", UserWarning

Variance 6.104897599073192No:  4

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.  "timeout or by a memory leak.", UserWarning

Variance 6.0256214558717325No:  5Variance 5.838685457519473

---------------------------------------------------------------------------KeyboardInterrupt Traceback (most recent call last)/tmp/ipykernel_6869/1605360134.py in  10 passthrough=False, cv=cv[i], n_jobs=4) 11 Y_train_k =Y_all[i] ---> 12 model_final.fit(X_train_k1, Y_train_k) 13 zz = np.round((X_val1.shape[0] - 1) / (1 + np.exp(-1 * model_final.predict(X_val1))) - 1) # 标签解码 14 rank_all1.append(zz) /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/sklearn/ensemble/_stacking.py in fit(self, X, y, sample_weight) 757 """ 758 y = column_or_1d(y, warn=True) --> 759 return super().fit(X, y, sample_weight) 760 761  def transform(self, X):/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/sklearn/ensemble/_stacking.py in fit(self, X, y, sample_weight) 216 X_meta = self._concatenate_predictions(X, predictions) 217 _fit_single_estimator( --> 218self.final_estimator_, X_meta, y, sample_weight=sample_weight 219 ) 220 /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/sklearn/ensemble/_base.py in _fit_single_estimator(estimator, X, y, sample_weight, message_clsname, message) 40  else: 41 with _print_elapsed_time(message_clsname, message): ---> 42  estimator.fit(X, y) 43 return estimator 44 /tmp/ipykernel_6869/996371743.py in fit(self, X, y) 106 self.get_initial_cov(X) 107  # 更新(训练)gpnas预测器超参数 --> 108  self.get_posterior_mean(X[1::2], y[1::2]) 109 110 def predict(self, X): /tmp/ipykernel_6869/996371743.py in get_posterior_mean(self, X, Y) 184 1])) + self.hp_mat * np.eye(X.shape[1])) * ( 185 X.T * np.linalg.inv(cov_mat + self.hp_mat * np.eye( --> 186 X.shape[0])) * Y.T + 187 np.linalg.inv(self.cov_w + self.hp_mat * np.eye( 188 X.shape[1])) * self.w) <__array_function__ internals> in inv(*args, **kwargs) /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/numpy/linalg/linalg.py in inv(a) 544 signature = 'D->D' if isComplexType(t) else 'd->d' 545 extobj = get_linalg_error_extobj(_raise_linalgerror_singular) --> 546 ainv = _umath_linalg.inv(a,signature=signature, extobj=extobj) 547 return wrap(ainv.astype(result_t, copy=False)) 548 KeyboardInterrupt: 

训练预测方式2

对应B榜主动提交结果

将预测结果重排

In [ ]

# X_train_k1 = np.array(arch_list_train1)# X_val1 = np.array(test_arch_list1)# rank_all1 = []# for i in [0, 1, 2, 3, 4, 5, 7]:#     print('No: ', i)#     model_final = StackingRegressor(estimators=list_est[i],#                                     final_estimator=gp_est[i],#                                     passthrough=False, cv=cv[i], n_jobs=4)#     Y_train_k = Y_all[i]#     model_final.fit(X_train_k1, Y_train_k)#     zz = ((X_val1.shape[0] - 1) / (1 + np.exp(-1 * model_final.predict(X_val1))) - 1)#     zz = np.asarray(zz)#     zz = zz.reshape(99500,)#     tmp = zz.argsort()#     rr = np.empty_like(tmp)#     rr[tmp] = np.arange(len(zz))#     rank_all1.append(rr)# X_train_k2 = np.array(arch_list_train2)# X_val2 = np.array(test_arch_list2)# rank_all2 = []# for i in [6]:#     print('No: ', i)#     model_final = StackingRegressor(estimators=list_est[i],#                                     final_estimator=gp_est[i],#                                     passthrough=False, cv=cv[i], n_jobs=4)#     Y_train_k = Y_all[i]#     model_final.fit(X_train_k2, Y_train_k)#     zz = ((X_val2.shape[0] + 1) / (1 + np.exp(-1 * model_final.predict(X_val2))) - 1)#     zz = np.asarray(zz)#     zz = zz.reshape(99500, )#     tmp = zz.argsort()#     rr = np.empty_like(tmp)#     rr[tmp] = np.arange(len(zz))#     rank_all2.append(rr)

生成提交文件

In [ ]

for idx, key in enumerate(test_data.keys()):    test_data[key]['cplfw_rank'] = int(rank_all1[0][idx])    test_data[key]['market1501_rank'] = int(rank_all1[1][idx])    test_data[key]['dukemtmc_rank'] = int(rank_all1[2][idx])    test_data[key]['msmt17_rank'] = int(rank_all1[3][idx])    test_data[key]['veri_rank'] = int(rank_all1[4][idx])    test_data[key]['vehicleid_rank'] = int(rank_all1[5][idx])    test_data[key]['veriwild_rank'] = int(rank_all2[0][idx])    test_data[key]['sop_rank'] = int(rank_all1[6][idx])with open('./aistudio-version.json', 'w') as f:    json.dump(test_data, f)

贝叶斯优化调参

调参过程

下面给出task1的GPNAS调参过程示例

In [ ]

# from bayes_opt import BayesianOptimization# X_train_k1 = np.array(arch_list_train1)# X_val1 = np.array(test_arch_list1)# def rf_cv(hp_mat, hp_cov):#     val = cross_val_score(StackingRegressor(estimators=list_est[0],#                                             final_estimator=GPNAS2(c_flag=1, m_flag=1, hp_mat=float(hp_mat),#                                                                       hp_cov=float(hp_cov), icov=0),#                                             passthrough=False, cv=cv[i], n_jobs=4)#                           , X=X_train_k1, y=Y_all[0], verbose=0, cv=5, scoring=make_scorer(mean_squared_error)#                           ).mean()#     return 1 - val# rf_bo = BayesianOptimization(#     rf_cv,#     {#         'hp_mat': (0, 3),#         'hp_cov': (0, 3),#     }# )# rf_bo.maximize()

热门推荐

更多

热门文章

更多

首页  返回顶部

本站所有软件都由网友上传,如有侵犯您的版权,请发邮件youleyoucom@outlook.com