时间:2025-07-30 作者:游乐小编
本文围绕飞桨常规赛中PALM眼底彩照黄斑中央凹定位任务展开。介绍了用resnet50加载预训练模型,准备数据集并划分训练集与验证集,定义模型结构,采用自定义损失函数,通过PolynomialDecay优化器训练,最后对测试集预测并输出结果的全过程。
常规赛:PALM眼底彩照中黄斑中央凹定位由ISBI2019 PALM眼科挑战赛赛题再现,其中黄斑中央凹定位的任务旨在对眼科图像进行判断是否存在黄斑中央凹,并对其进行定位。
数据集由中山大学中山眼科中心提供800张带黄斑中央凹坐标标注的眼底彩照供选手训练模型,另提供400张带标注数据供平台进行模型测试。图像分辨率为1444×1444,或2124×2056。黄斑中央凹坐标信息存储在xlsx文件中,名为“Fovea_Location_train”,第一列对应眼底图像的文件名(包括扩展名“.jpg”),第二列包含x坐标,第三列包含y坐标。
评价指标为平均欧式距离,计算每个测试样本预测的黄斑中央凹坐标与金标准的差距,最终计算平均的欧式距离。 最终评分为平均欧式距离的倒数。
比赛链接: 常规赛:PALM眼底彩照中黄斑中央凹定位
用resnet50加载一个训练更多的预训练模型。
In [ ]
import osimport pandas as pdimport numpy as npimport paddleimport paddle.vision.transforms as Tfrom paddle.io import Datasetfrom PIL import Image
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations def convert_to_list(value, n, name, dtype=np.int):
In [ ]
! unzip -oq data/data100179/常规赛:PALM眼底彩照中黄斑中央凹定位.zip! rm -rf __MACOSX! mv 常规赛:PALM眼底彩照中黄斑中央凹定位 PLAM
In [ ]
import warningswarnings.filterwarnings("ignore") #拒绝烦人的警告信息
In [ ]
from paddle.io import DataLoadertpsize = 256 split = 0.9batch_size = 16class PLAMDatas(Dataset): def __init__(self, data_path, class_xls, mode='train', transforms=None, re_size=tpsize): super(PLAMDatas, self).__init__() self.data_path = data_path self.name_label = (pd.read_excel(class_xls)).values lens = len(self.name_label) if mode == 'train': self.name_label = self.name_label[:int(split*lens)] else: self.name_label = self.name_label[int(split*lens):] self.transforms = transforms self.re_size = re_size def __getitem__(self, index): name, x, y = self.name_label[index] # 得到的数据赋值一下 data_path = os.path.join(self.data_path, name) # 文件系统路径+图片的name=图片的路径 data = np.asarray(Image.open(data_path).convert('RGB')) H, W, _ = data.shape if self.transforms is not None: data = self.transforms(data) data = data.astype('float32') label = np.array([x * self.re_size / W, y * self.re_size / H]).astype('float32') # 图片大小变了,对应的坐标自然也要改变 return data, label def __len__(self): return len(self.name_label)# 配置数据增广train_transforms = T.Compose([ T.Resize((tpsize, tpsize), interpolation='bicubic'), #都调整到1800 选用bicubic,放大不至于太失真 T.ToTensor()])val_transforms = T.Compose([ T.Resize((tpsize, tpsize), interpolation='bicubic'), T.ToTensor()])# 配置数据集train_dataset = PLAMDatas(data_path='PLAM/Train/fundus_image', class_xls='PLAM/Train/Fovea_Location_train.xlsx', mode='train', transforms=train_transforms)val_dataset = PLAMDatas(data_path='PLAM/Train/fundus_image', class_xls='PLAM/Train/Fovea_Location_train.xlsx', mode='test', transforms=val_transforms)train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)dev_dataloader = DataLoader( dataset=val_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
这里也可以输出测试一下,看看数据读取有没有什么问题。避免后面报一堆错不知道哪儿去找问题。顺便看看点是不是点到位了。
In [ ]
print(len(train_dataset), len(val_dataset))print(len(train_dataloader), len(dev_dataloader))
720 8045 5
In [ ]
import paddleimport paddle.nn as nnfrom paddle.vision.models import resnet50# 模型定义# pre_params = paddle.load('resnet_50_save_models/final.pdparams')# model.set_state_dict(pre_params)model = nn.Sequential( resnet50(pretrained=True), nn.LeakyReLU(), nn.Linear(1000, 2) # 坐标定位)paddle.summary(model, (1, 3, tpsize, tpsize))model = paddle.Model(model)
2024-07-23 14:09:08,122 - INFO - unique_endpoints {''}2024-07-23 14:09:08,124 - INFO - Downloading resnet50.pdparams from https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams100%|██████████| 151272/151272 [00:02<00:00, 61339.97it/s]2024-07-23 14:09:10,837 - INFO - File /home/aistudio/.cache/paddle/hapi/weights/resnet50.pdparams md5 checking...------------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # =============================================================================== Conv2D-1 [[1, 3, 256, 256]] [1, 64, 128, 128] 9,408 BatchNorm2D-1 [[1, 64, 128, 128]] [1, 64, 128, 128] 256 ReLU-1 [[1, 64, 128, 128]] [1, 64, 128, 128] 0 MaxPool2D-1 [[1, 64, 128, 128]] [1, 64, 64, 64] 0 Conv2D-3 [[1, 64, 64, 64]] [1, 64, 64, 64] 4,096 --------------------------------省略-------------------------------------------BottleneckBlock-16 [[1, 2048, 8, 8]] [1, 2048, 8, 8] 0 AdaptiveAvgPool2D-1 [[1, 2048, 8, 8]] [1, 2048, 1, 1] 0 Linear-1 [[1, 2048]] [1, 1000] 2,049,000 ResNet-1 [[1, 3, 256, 256]] [1, 1000] 0 LeakyReLU-1 [[1, 1000]] [1, 1000] 0 Linear-2 [[1, 1000]] [1, 2] 2,002 ===============================================================================Total params: 25,612,154Trainable params: 25,505,914Non-trainable params: 106,240-------------------------------------------------------------------------------Input size (MB): 0.75Forward/backward pass size (MB): 341.54Params size (MB): 97.70Estimated Total Size (MB): 439.99-------------------------------------------------------------------------------
这里采用红白黑大佬设计了loss损失函数,计算MSE和欧氏距离加权后的平均损失值
In [14]
# 自定义损失import paddleimport paddle.nn as nnimport paddle.nn.functional as Fclass FocusBCELoss(nn.Layer): ''' 本赛题的任务损失函数 ''' def __init__(self, weights=[0.5, 0.5]): super(FocusBCELoss, self).__init__() self.weights = weights # 损失权重 def forward(self, predict, label): # MSE均方误差 mse_loss_x = paddle.nn.functional.mse_loss(predict[:, 0], label[:, 0], reduction='mean') mse_loss_y = paddle.nn.functional.mse_loss(predict[:, 1], label[:, 1], reduction='mean') mse_loss = 0.5 * mse_loss_x + 0.5 * mse_loss_y # 欧氏距离 distance_loss = paddle.subtract(predict, label) distance_loss = paddle.square(distance_loss) distance_loss = paddle.sum(distance_loss, axis=-1) distance_loss = paddle.sqrt(distance_loss) distance_loss = paddle.sum(distance_loss, axis=0) / predict.shape[0] # predict.shape[0] == batch_size alpha1, alpha2 = self.weights all_loss = alpha1*mse_loss + alpha2*distance_loss return all_loss, mse_loss, distance_loss
这里采用PolynomialDecay跑
运行时长: 16小时20分钟53秒401毫秒
In [15]
# 模型准备epochs = 1000lr = paddle.optimizer.lr.PolynomialDecay(learning_rate=2e-3, decay_steps=int(800*tpsize))opt = paddle.optimizer.Adam(learning_rate=lr, parameters=model.parameters(), weight_decay=paddle.regularizer.L2Decay(5e-6))loss = FocusBCELoss(weights=[0.4, 0.6]) # weights,不同类别的损失权重model.prepare( optimizer = opt, loss = loss )visualdl=paddle.callbacks.VisualDL(log_dir='visual_log')#在使用GPU机器时,可以将use_gpu变量设置成Trueuse_gpu = Truepaddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')# 模型微调model.fit( train_data=train_dataset, eval_data=val_dataset, batch_size=batch_size, epochs=epochs, eval_freq=10, log_freq=1, save_dir='resnet_50_save_models_256_0.9_16', save_freq=10, verbose=1, drop_last=False, shuffle=True, num_workers=0, callbacks=[visualdl])
跑完1000轮之后的loss基本上稳定在了0.5-2.5
Epoch 993/1000step 45/45 [==============================] - loss: 0.7025 0.5066 0.8331 - 1s/step Epoch 994/1000step 45/45 [==============================] - loss: 1.8822 2.1647 1.6938 - 1s/step Epoch 995/1000step 45/45 [==============================] - loss: 2.5339 2.9379 2.2646 - 1s/step Epoch 996/1000step 45/45 [==============================] - loss: 1.3060 1.2016 1.3756 - 1s/step Epoch 997/1000step 45/45 [==============================] - loss: 0.7337 0.4999 0.8896 - 1s/step Epoch 998/1000step 45/45 [==============================] - loss: 1.0640 0.8573 1.2018 - 1s/step Epoch 999/1000step 45/45 [==============================] - loss: 1.3307 1.1557 1.4473 - 1s/step Epoch 1000/1000step 45/45 [==============================] - loss: 0.5870 0.3452 0.7482 - 1s/step
可视化情况如下:
预测这里就是因为图像的大小变了,所以预测得到的坐标还需要进行一次计算还原到原来的大小,感觉这也是误差的一个来源。
In [16]
import osimport numpy as npimport pandas as pdfrom PIL import Imageimport paddle.vision.transforms as Timport paddleimport paddle.nn as nnimport paddle.nn.functional as Ffrom paddle.vision.models import resnet50save_path = 'Fovea_Localization_Results.csv'file_path = 'PLAM/PALM-Testing400-Images'imgs_name = os.listdir(file_path)model = nn.Sequential( resnet50(pretrained=False), nn.LeakyReLU(), nn.Linear(1000, 2))params = paddle.load('resnet_50_save_models_256_0.9_16/final.pdparams')model.set_state_dict(params)model.eval()inf_transforms = T.Compose([ T.Resize((tpsize, tpsize), interpolation='bicubic'), T.ToTensor()])pre_data = []for img_name in imgs_name: data_path = os.path.join(file_path, img_name) data = np.asarray(Image.open(data_path).convert('RGB')) H, W, _ = data.shape data = inf_transforms(data) data = data.astype('float32').reshape([1, 3, tpsize, tpsize]) pred = model(data) pre = [None] * 2 # 还原坐标 pre[0] = pred.numpy()[0][0] * W / tpsize pre[1] = pred.numpy()[0][1] * H / tpsize print(img_name, pre) pre_data.append([img_name, pre[0], pre[1]])df = pd.DataFrame(pre_data, columns=['FileName', 'Fovea_X', 'Fovea_Y'])df.sort_values(by="FileName",inplace=True,ascending=True) #千万记得排序!df.to_csv(save_path, index=None)
In [17]
df
FileName Fovea_X Fovea_Y180 T0001.jpg 1293.032825 990.452656319 T0002.jpg 1078.404609 1054.413445114 T0003.jpg 1038.041723 1045.842130381 T0004.jpg 1195.271087 1053.216895124 T0005.jpg 1229.637487 723.297234.. ... ... ...246 T0396.jpg 1208.370796 972.463286127 T0397.jpg 1245.531012 1054.355603207 T0398.jpg 1310.560631 998.023864335 T0399.jpg 1031.135805 1115.349770330 T0400.jpg 1141.022628 719.758717[400 rows x 3 columns]
In [18]
import osimport numpy as npimport pandas as pdfrom PIL import Imageimport matplotlib.pyplot as plt%matplotlib inlinepath = 'PLAM/PALM-Testing400-Images'flrs = np.array(pd.read_csv('Fovea_Localization_Results.csv'))for flr in flrs: img = np.array(Image.open(os.path.join(path, flr[0]))) x, y = flr[1:] plt.imshow(img.astype('uint8')) plt.plot(x, y, 'or') plt.show() break
2024-07-24 11:51:37,562 - INFO - font search path ['/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf', '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/afm', '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/pdfcorefonts']2024-07-24 11:51:38,128 - INFO - generated new fontManager
2021-11-05 11:52
手游攻略2021-11-19 18:38
手游攻略2021-10-31 23:18
手游攻略2022-06-03 14:46
游戏资讯2025-06-28 12:37
单机攻略