时间:2025-07-24 作者:游乐小编
本文围绕CV领域MLP模型压缩中的剪枝技术展开,介绍剪枝因深度学习模型过参数化而生,可去除冗余参数。细粒度剪枝分训练基准模型、剪去低于阈值连接、微调恢复性能等步骤。还给出MLP剪枝实现代码,包括网络搭建、训练、剪枝函数等,展示剪枝前后效果,提及卷积剪枝思路。
剪枝步骤
第一步:训练一个基准模型。第二步:对权重值的幅度进行排序,去掉低于一个预设阈值的连接,得到剪枝后的网络。第三步:对剪枝后网络进行微调以恢复损失的性能,然后继续进行第二步,依次交替,直到满足终止条件,比如精度下降在一定范围内。
np.percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False) a : array,用来算分位数的对象,可以是多维的数组q : 介于0-100的float,用来计算是几分位的参数,如四分之一位就是25,如要算两个位置的数就(25,75)axis : 坐标轴的方向,一维的就不用考虑了,多维的就用这个调整计算的维度方向,取值范围0/1out : 输出数据的存放对象,参数要与预期输出有相同的形状和缓冲区长度overwrite_input : bool,默认False,为True时及计算直接在数组内存计算,计算后原数组无法保存interpolation : 取值范围{'linear', 'lower', 'higher', 'midpoint', 'nearest'} 默认liner,比如取中位数,但是中位数有两个数字6和7,选不同参数来调整输出keepdims : bool,默认False,为真时取中位数的那个轴将保留在结果中登录后复制In [1]
# 作用:找到一组数的分位数值,如二分位数等(具体什么位置根据自己定义)# 方便我们之后设定剪枝的阈值import numpy as npa = np.array([[1,2,3,4,5,6,7,8,9]])np.percentile(a, 50)登录后复制
5.0登录后复制
核心代码实现步骤
1 通过设定的阈值找到相应的权重,大于这个权重为true,小于为false,生成bool矩阵2 将bool矩阵转为0-1矩阵,这就是我们所需的mask3 mask乘上初始权重得到最终剪枝后的权重
# 导入所需包import paddleimport paddle.nn as nnimport paddle.nn.functional as Fimport paddle.utilsimport numpy as npimport mathfrom copy import deepcopyfrom matplotlib import pyplot as pltfrom paddle.io import Datasetfrom paddle.io import DataLoaderfrom paddle.vision import datasetsfrom paddle.vision import transforms登录后复制
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import MutableMapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Iterable, Mapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Sized登录后复制In [2]
# 搭建基础线性层class MaskedLinear(nn.Linear): def __init__(self, in_features, out_features, bias=True): super(MaskedLinear, self).__init__(in_features, out_features, bias) self.mask_flag = False self.mask = None def set_mask(self, mask): self.mask = mask self.weight.set_value(self.weight * self.mask) self.mask_flag = True def get_mask(self): print(self.mask_flag) return self.mask def forward(self, x): if self.mask_flag: weight = self.weight * self.mask return F.linear(x, weight, self.bias) else: return F.linear(x, self.weight, self.bias)登录后复制In [3]
# 搭建MLP网络class MLP(nn.Layer): def __init__(self): super(MLP, self).__init__() self.linear1 = MaskedLinear(28 * 28 * 3, 200) self.relu1 = nn.ReLU() self.linear2 = MaskedLinear(200, 200) self.relu2 = nn.ReLU() self.linear3 = MaskedLinear(200, 10) def forward(self, x): out = paddle.reshape(x, (x.shape[0], -1)) out = self.relu1(self.linear1(out)) out = self.relu2(self.linear2(out)) out = self.linear3(out) return out def set_masks(self, masks): # Should be a less manual way to set masks # Leave it for the future self.linear1.set_mask(masks[0]) self.linear2.set_mask(masks[1]) self.linear3.set_mask(masks[2])登录后复制In [4]
# 打印输出网络结构mlp_Net = MLP()paddle.summary(mlp_Net,(1, 3, 28, 28))登录后复制
W0127 11:14:20.232509 135 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1W0127 11:14:20.238121 135 device_context.cc:465] device: 0, cuDNN Version: 7.6.登录后复制
--------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # ===========================================================================MaskedLinear-1 [[1, 2352]] [1, 200] 470,600 ReLU-1 [[1, 200]] [1, 200] 0 MaskedLinear-2 [[1, 200]] [1, 200] 40,200 ReLU-2 [[1, 200]] [1, 200] 0 MaskedLinear-3 [[1, 200]] [1, 10] 2,010 ===========================================================================Total params: 512,810Trainable params: 512,810Non-trainable params: 0---------------------------------------------------------------------------Input size (MB): 0.01Forward/backward pass size (MB): 0.01Params size (MB): 1.96Estimated Total Size (MB): 1.97---------------------------------------------------------------------------登录后复制
{'total_params': 512810, 'trainable_params': 512810}登录后复制In [5]
# 图像转tensor操作,也可以加一些数据增强的方式,例如旋转、模糊等等# 数据增强的方式要加在Compose([ ])中def get_transforms(mode='train'): if mode == 'train': data_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2024, 0.1994, 0.2010])]) else: data_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2024, 0.1994, 0.2010])]) return data_transforms# 获取最新MNIST数据集def get_dataset(name='MNIST', mode='train'): if name == 'MNIST': dataset = datasets.MNIST(mode=mode, transform=get_transforms(mode)) return dataset# 定义数据加载到模型形式def get_dataloader(dataset, batch_size=128, mode='train'): dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=2, shuffle=(mode == 'train')) return dataloader登录后复制In [6]
# 初始化函数,用于模型初始化class AverageMeter(): """ Meter for monitoring losses""" def __init__(self): self.avg = 0 self.sum = 0 self.cnt = 0 self.reset() def reset(self): """reset all values to zeros""" self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): """update avg by val and n, where val is the avg of n values""" self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt登录后复制In [7]
# mlp网络训练def mlp_train_one_epoch(model, dataloader, criterion, optimizer, epoch, total_epoch, report_freq=20): print(f'----- Training Epoch [{epoch}/{total_epoch}]:') loss_meter = AverageMeter() acc_meter = AverageMeter() model.train() for batch_idx, data in enumerate(dataloader): image = data[0] label = data[1] out = model(image) loss = criterion(out, label) loss.backward() optimizer.step() optimizer.clear_grad() pred = nn.functional.softmax(out, axis=1) acc1 = paddle.metric.accuracy(pred, label) batch_size = image.shape[0] loss_meter.update(loss.cpu().numpy()[0], batch_size) acc_meter.update(acc1.cpu().numpy()[0], batch_size) if batch_idx > 0 and batch_idx % report_freq == 0: print(f'----- Batch[{batch_idx}/{len(dataloader)}], Loss: {loss_meter.avg:.5}, Acc@1: {acc_meter.avg:.4}') print(f'----- Epoch[{epoch}/{total_epoch}], Loss: {loss_meter.avg:.5}, Acc@1: {acc_meter.avg:.4}')登录后复制In [8]
# mlp网络预测def mlp_validate(model, dataloader, criterion, report_freq=10): print('----- Validation') loss_meter = AverageMeter() acc_meter = AverageMeter() model.eval() for batch_idx, data in enumerate(dataloader): image = data[0] label = data[1] out = model(image) loss = criterion(out, label) pred = paddle.nn.functional.softmax(out, axis=1) acc1 = paddle.metric.accuracy(pred, label) batch_size = image.shape[0] loss_meter.update(loss.cpu().numpy()[0], batch_size) acc_meter.update(acc1.cpu().numpy()[0], batch_size) if batch_idx > 0 and batch_idx % report_freq == 0: print(f'----- Batch [{batch_idx}/{len(dataloader)}], Loss: {loss_meter.avg:.5}, Acc@1: {acc_meter.avg:.4}') print(f'----- Validation Loss: {loss_meter.avg:.5}, Acc@1: {acc_meter.avg:.4}')登录后复制In [9]
def weight_prune(model, pruning_perc): ''' Prune pruning_perc % weights layer-wise ''' threshold_list = [] for p in model.parameters(): if len(p.shape) != 1: # bias weight = p.abs().numpy().flatten() # 将权重参数拉伸为1维 threshold = np.percentile(weight, pruning_perc) # 根据阈值对权重参数进行筛选 threshold_list.append(threshold) # generate mask masks = [] idx = 0 for p in model.parameters(): if len(p.shape) != 1: pruned_inds = p.abs() > threshold_list[idx] # 返回bool矩阵 pruned_inds = paddle.cast(pruned_inds, 'float32') # paddle.cast将bool->float masks.append(pruned_inds) idx += 1 return masks登录后复制In [10]
# mlp网络主函数def mlp_main(): total_epoch = 1 batch_size = 256 model = MLP() train_dataset = get_dataset(mode='train') train_dataloader = get_dataloader(train_dataset, batch_size, mode='train') val_dataset = get_dataset(mode='test') val_dataloader = get_dataloader(val_dataset, batch_size, mode='test') criterion = nn.CrossEntropyLoss() scheduler = paddle.optimizer.lr.CosineAnnealingDecay(0.02, total_epoch) optimizer = paddle.optimizer.Momentum(learning_rate=scheduler, parameters=model.parameters(), momentum=0.9, weight_decay=5e-4) eval_mode = False if eval_mode: state_dict = paddle.load('./mlp_ep2.pdparams') model.set_state_dict(state_dict) mlp_validate(model, val_dataloader, criterion) return save_freq = 5 test_freq = 1 for epoch in range(1, total_epoch+1): mlp_train_one_epoch(model, train_dataloader, criterion, optimizer, epoch, total_epoch) scheduler.step() if epoch % test_freq == 0 or epoch == total_epoch: mlp_validate(model, val_dataloader, criterion) if epoch % save_freq == 0 or epoch == total_epoch: paddle.save(model.state_dict(), f'./mlp_ep{epoch}.pdparams') paddle.save(optimizer.state_dict(), f'./mlp_ep{epoch}.pdopts') # 剪枝后的效果 print("\n=====Pruning 60%=======\n") pruned_model = deepcopy(model) mask = weight_prune(pruned_model, 60) pruned_model.set_masks(mask) mlp_validate(pruned_model, val_dataloader, criterion) return model,pruned_model登录后复制In [11]
# 返回值是剪枝前后网络模型mlp_model, mlp_pruned_model = mlp_main()登录后复制In [12]
# 定义模型权重展示函数def plot_weights(model): modules = [module for module in model.sublayers()] num_sub_plot = 0 for i, layer in enumerate(modules): if hasattr(layer, 'weight'): plt.subplot(131+num_sub_plot) w = layer.weight w_one_dim = w.cpu().numpy().flatten() plt.hist(w_one_dim[w_one_dim!=0], bins=50) num_sub_plot += 1 plt.show()登录后复制In [13]
# 剪枝前的权重plot_weights(mlp_model)登录后复制
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2349: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working if isinstance(obj, collections.Iterator):/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2366: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working return list(data) if isinstance(data, collections.MappingView) else data登录后复制
登录后复制登录后复制In [14]
# 剪枝后的权重plot_weights(mlp_pruned_model)登录后复制
登录后复制登录后复制
# 找出特定元素的位置# 筛选出True值对应位置的数据np.random.seed(7) #相同的种子可确保随机数按序生成时是相同的,结果可重现b = np.random.randint(40, 100, size=(6,6)) # 生成40到100,6x6个随机数print('b={}\nb中小于70的元素为\n\n{}'.format(b,b<70)) ind = np.where(b>60,b,0) # 返回的是一个tuple 类型print("np.where(b>60,b,0)=\n{}".format(ind))登录后复制
b=[[87 44 65 94 43 59] [63 79 68 97 54 63] [48 65 86 82 66 48] [79 78 44 88 47 84] [40 51 95 98 46 59] [84 45 96 64 95 93]]b中小于70的元素为[[False True True False True True] [ True False True False True True] [ True True False False True True] [False False True False True False] [ True True False False True True] [False True False True False False]]np.where(b>60,b,0)=[[87 0 65 94 0 0] [63 79 68 97 0 63] [ 0 65 86 82 66 0] [79 78 0 88 0 84] [ 0 0 95 98 0 0] [84 0 96 64 95 93]]登录后复制
2021-11-05 11:52
手游攻略2021-11-19 18:38
手游攻略2021-10-31 23:18
手游攻略2022-06-03 14:46
游戏资讯2025-06-28 12:37
单机攻略