当前位置: 首页 > AI > 文章内容页

基于PaddleDetecion的跌倒检测

时间:2025-07-22    作者:游乐小编    

该项目基于PaddleDetection2.0的YOLOv3(mobilenetv3主干)实现跌倒检测,可部署于医疗机构等场景。背景源于生活中常见跌倒场景。使用aistudio开源VOC格式跌倒检测数据集,通过PaddleX切分数据集。流程包括克隆仓库、安装依赖、配置文件、训练模型,还涉及错误图片处理,可进行评估与预测,结果存于work目录。

基于paddledetecion的跌倒检测 - 游乐网

【PaddleDetection2.0】

本项目通过使用PaddleDetection2.0中的YOLOv3(主干网络为mobilenetv3的轻量化模型),实现目标检测用于检测人体跌倒姿态,完善模型训练之后可以部署于医疗机构、社区监督或者家里有老人需要的场景需求,都可以进行使用。

【项目背景】

在我喜欢的B站UP主--《虫哥说电影》,讲解国产宫斗剧中经常发生的名场面:啊~我跌倒了,在生活中,老人摔倒受伤的情况常常发生,在野球场打球时,遇到被强有力防守盖帽摔倒,跌倒的场景无处不在,于是小白打算尝试做一个基于PaddleDetection的跌倒检测的项目(demo)

基于PaddleDetecion的跌倒检测 - 游乐网        

【数据集简介】

使用了aistudio上的开源数据集,跌倒检测数据集Fall detection Datase,该数据集为VOC格式,由作者Niki_173制作,感谢大佬的数据集,利于同我一样的小白学习使用,可以通过调用PaddleX一键切分出自己想要的训练集、测试集、验证集,当然这也可以用PaddleX的全流程开发使用,感兴趣的xdm也可以试试

【快速上手】

1.克隆PaddleDetection仓库

In [ ]
#从gitee上克隆PaddleDetection! git clone https://gitee.com/paddlepaddle/PaddleDetection.git
登录后复制    In [ ]
#安装paddlex!pip install paddlex
登录后复制    

解压数据集,解压到PaddleDetection文件目录dataset的voc路径下(方便后面的config配置),如果不放在目录下会出现无法读取数据且无法识别数据类型的报错(先手动删除原来文件夹里的几个文件)

In [ ]
#用于解压数据集!unzip -oq /home/aistudio/data/data94809/pp_fall.zip -d PaddleDetection/dataset/voc
登录后复制    

安装相关依赖包(不过我并没有使用,如果有别的构思的可以安装,然后编写自己的想法)

In [ ]
! pip install paddledet==2.0.1 -i https://mirror.baidu.com/pypi/simple
登录后复制    

调用PaddleX切分数据集,下面是按7:2:1分解数据集、验证集、测试集

In [20]
#此处移动是满足VOC格式需求%cd ~!mv PaddleDetection/dataset/voc/images PaddleDetection/dataset/voc/JPEGImages#更改下面的val/test的比例可以更改数据集划分的比例!paddlex --split_dataset --format VOC --dataset_dir PaddleDetection/dataset/voc --val_value 0.2 --test_value 0.1
登录后复制        
/home/aistudiomv: cannot stat 'PaddleDetection/dataset/voc/images': No such file or directory/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/setuptools/depends.py:2: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses  import impDataset Split Done.Train samples: 1001Eval samples: 285Test samples: 142Split files saved in PaddleDetection/dataset/voc
登录后复制        

数据集是作者Niki_173自己制作的(作者的说明中表示有些图片的标签信息PD识别shape会有错误),感谢大佬精心的数据集,这也是在执行train.py文件后会报大概有10张图片有问题的原因,通过下面代码删除文件

如果执行训练时遇到类似)如下错误,不要慌张,就是报错图片未移除基于PaddleDetecion的跌倒检测 - 游乐网        

In [ ]
import os# 把错误图片的数字依次删除。jpg/xml文件后,再次运行Paddlex的切分数据集命令#在模型训练时会出现报错,可以看到那些图片识别shape会报错file_name = "PaddleDetection/dataset/voc/JPEGImages/fall_137.jpg"if os.path.exists(file_name):    os.remove(file_name)    print('成功删除文件:', file_name)else:    print('未找到此文件:', file_name)file_name = "PaddleDetection/dataset/voc/Annotations/fall_137.xml"if os.path.exists(file_name):    os.remove(file_name)    print('成功删除文件:', file_name)else:    print('未找到此文件:', file_name)
登录后复制        
成功删除文件: PaddleDetection/dataset/voc/JPEGImages/fall_137.jpg成功删除文件: PaddleDetection/dataset/voc/Annotations/fall_137.xml
登录后复制        

'base/optimizer_270e.yml',主要说明了学习率和优化器的配置,以及设置epochs。在其他的训练的配置中,学习率和优化器是放在了一个新的配置文件中。

'../datasets/voc.yml'主要说明了训练数据和验证数据的路径,包括数据格式(coco、voc等)

'base/yolov3_reader.yml', 主要说明了读取后的预处理操作,比如resize、数据增强等等

'base/yolov3_mobilenet_v3_large.yml',主要说明模型、和主干网络的情况说明。

'../runtime.yml',主要说明了公共的运行状态,比如说是否使用GPU、迭代轮数等等

配置voc.yml文件,PaddleDetection/configs/datasets/voc.yml

metric: VOCmap_type: 11pointnum_classes: 1TrainDataset:  !VOCDataSet    dataset_dir: dataset/voc    anno_path: train_list.txt    label_list: labels.txt    data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']EvalDataset:  !VOCDataSet    dataset_dir: dataset/voc    anno_path: val_list.txt    label_list: labels.txt    data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']TestDataset:  !ImageFolder    anno_path: dataset/voc/labels.txt
登录后复制        

配置optimizer_270e.yml文件,PaddleDetection/configs/yolov3/base/optimizer_270e.yml

epoch: 200LearningRate:  base_lr: 0.001  schedulers:  - !PiecewiseDecay    gamma: 0.1    milestones:    - 216    - 243  - !LinearWarmup    start_factor: 0.    steps: 4000OptimizerBuilder:  optimizer:    momentum: 0.9    type: Momentum  regularizer:    factor: 0.0005    type: L2
登录后复制        

配置完成后便可以开始训练

模型训练

In [18]
#如果报错就进入PaddleDetection目录再运行%cd PaddleDetection#如果还是出现无法找到文件错误,进入终端依次执行命令即可,或者直接把相对路径改为绝对路径就可以!python tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml
登录后复制        
/home/aistudio/PaddleDetection/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/setuptools/depends.py:2: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses  import imp/home/aistudio/PaddleDetection/ppdet/data/reader.py:190: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead  logger.warn("Shared memory size is less than 1G, "[08/15 11:08:00] reader WARNING: Shared memory size is less than 1G, disable shared_memory in DataLoader[08/15 11:08:01] ppdet.utils.checkpoint INFO: Finish loading model weights: /home/aistudio/.cache/paddle/weights/MobileNetV1_ssld_pretrained.pdparams[08/15 11:08:10] ppdet.engine INFO: Epoch: [0] [  0/125] learning_rate: 0.000000 loss_xy: 2.628794 loss_wh: 4.712801 loss_obj: 4569.814453 loss_cls: 0.650645 loss: 4577.807129 eta: 3 days, 13:27:54 batch_cost: 9.1163 data_cost: 0.3383 ips: 0.8776 images/s
登录后复制        

模型评估测试

In [ ]
%cd PaddleDetection!export CUDA_VISIBLE_DEVICES=0!python  tools/eval.py -c configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml
登录后复制    

模型预测

预测结果在Paddledetdction目录下的work文件中

可以自己更改预测文件目录在测试集中任选其一预测

In [ ]
!export CUDA_VISIBLE_DEVICES=0!python tools/infer.py -c configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml \                    --infer_img=dataset/voc/JPEGImages/fall_1193.jpg \                    --output_dir=work/ \                    --draw_threshold=0.5 \                    -o weights=output/yolov3_mobilenet_v1_ssld_270e_voc/model_final \                    --use_vdl=False
登录后复制    

模型预测结果

基于PaddleDetecion的跌倒检测 - 游乐网        

热门推荐

更多

热门文章

更多

首页  返回顶部

本站所有软件都由网友上传,如有侵犯您的版权,请发邮件youleyoucom@outlook.com