当前位置: 首页 > AI > 文章内容页

Swin Transformer:层次化视觉 Transformer

时间:2025-07-22    作者:游乐小编    

本文介绍了Swin Transformer模型的代码复现情况。作者完成了BackBone代码迁移,ImageNet 1k预训练模型可用且精度对齐,模型代码和ImageNet 22k预训练模型将更新到PPIM项目。文中展示了模型组网代码,包括窗口划分、注意力机制等模块,还提供了预设模型及精度验证结果,Swin-T在验证集上top1准确率达81.19%。

swin transformer:层次化视觉 transformer - 游乐网

引入

没有感情的论文复现机器又来整活了这次整一个前两天代码新鲜出炉的模型 Swin Transformer代码已经跑通,暂时只完成 BackBone 代码的迁移,ImageNet 1k 数据集预训练模型可用,精度对齐模型代码和 ImageNet 22k 预训练模型这几天会更新到 PPIM 项目中去

参考资料

论文:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

最新项目:microsoft/Swin-Transformer

才疏学浅,只会写写代码,就不班门弄斧解读这论文了

具体详解可以参考 @长风破浪会有时 大佬发布的项目 Swin Transformer,之前大佬写的 RepVGG 和 ReXNet 模型解析太强了

模型精度细节:

Swin Transformer:层次化视觉 Transformer - 游乐网                

构建模型

依然需要依赖 PPIM 进行模型搭建

安装依赖

In [ ]
# 安装 PPIM!pip install ppim
登录后复制    

导入必要的包

In [1]
import numpy as npimport paddleimport paddle.nn as nnimport paddle.vision.transforms as Tfrom ppim.models.vit import Mlpfrom ppim.models.common import to_2tuplefrom ppim.models.common import DropPath, Identityfrom ppim.models.common import trunc_normal_, zeros_, ones_
登录后复制    

模型组网

In [2]
def window_partition(x, window_size):    """    Args:        x: (B, H, W, C)        window_size (int): window size    Returns:        windows: (num_windows*B, window_size, window_size, C)    """    B, H, W, C = x.shape    x = x.reshape((B, H // window_size, window_size,                   W // window_size, window_size, C))    windows = x.transpose((0, 1, 3, 2, 4, 5)).reshape(        (-1, window_size, window_size, C))    return windowsdef window_reverse(windows, window_size, H, W):    """    Args:        windows: (num_windows*B, window_size, window_size, C)        window_size (int): Window size        H (int): Height of image        W (int): Width of image    Returns:        x: (B, H, W, C)    """    B = int(windows.shape[0] / (H * W / window_size / window_size))    x = windows.reshape(        (B, H // window_size, W // window_size, window_size, window_size, -1))    x = x.transpose((0, 1, 3, 2, 4, 5)).reshape((B, H, W, -1))    return xclass WindowAttention(nn.Layer):    r""" Window based multi-head self attention (W-MSA) module with relative position bias.    It supports both of shifted and non-shifted window.    Args:        dim (int): Number of input channels.        window_size (tuple[int]): The height and width of the window.        num_heads (int): Number of attention heads.        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0        proj_drop (float, optional): Dropout ratio of output. Default: 0.0    """    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):        super().__init__()        self.dim = dim        self.window_size = window_size  # Wh, Ww        self.num_heads = num_heads        head_dim = dim // num_heads        self.scale = qk_scale or head_dim ** -0.5        # define a parameter table of relative position bias        self.relative_position_bias_table = self.create_parameter(            shape=((2 * window_size[0] - 1) *                   (2 * window_size[1] - 1), num_heads),            default_initializer=zeros_        )  # 2*Wh-1 * 2*Ww-1, nH        self.add_parameter("relative_position_bias_table",                           self.relative_position_bias_table)        # get pair-wise relative position index for each token inside the window        coords_h = paddle.arange(self.window_size[0])        coords_w = paddle.arange(self.window_size[1])        coords = paddle.stack(paddle.meshgrid(            [coords_h, coords_w]))  # 2, Wh, Ww        coords_flatten = paddle.flatten(coords, 1)  # 2, Wh*Ww        relative_coords = coords_flatten.unsqueeze(-1) - \            coords_flatten.unsqueeze(1)  # 2, Wh*Ww, Wh*Ww        relative_coords = relative_coords.transpose(            (1, 2, 0))  # Wh*Ww, Wh*Ww, 2        relative_coords[:, :, 0] += self.window_size[0] - \            1  # shift to start from 0        relative_coords[:, :, 1] += self.window_size[1] - 1        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww        self.register_buffer("relative_position_index",                             relative_position_index)        self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)        self.attn_drop = nn.Dropout(attn_drop)        self.proj = nn.Linear(dim, dim)        self.proj_drop = nn.Dropout(proj_drop)        trunc_normal_(self.relative_position_bias_table)        self.softmax = nn.Softmax(axis=-1)    def forward(self, x, mask=None):        """        Args:            x: input features with shape of (num_windows*B, N, C)            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None        """        B_, N, C = x.shape        qkv = self.qkv(x).reshape((B_, N, 3, self.num_heads, C //                                   self.num_heads)).transpose((2, 0, 3, 1, 4))        q, k, v = qkv[0], qkv[1], qkv[2]        q = q * self.scale        attn = q.matmul(k.transpose((0, 1, 3, 2)))        relative_position_bias = paddle.index_select(            self.relative_position_bias_table,            self.relative_position_index.reshape((-1,)),            axis=0).reshape(            (self.window_size[0] * self.window_size[1],             self.window_size[0] * self.window_size[1], -1))        relative_position_bias = relative_position_bias.transpose((2, 0, 1))        attn = attn + relative_position_bias.unsqueeze(0)        if mask is not None:            nW = mask.shape[0]            attn = attn.reshape(                (B_ // nW, nW, self.num_heads, N, N)            ) + mask.unsqueeze(1).unsqueeze(0)            attn = attn.reshape((-1, self.num_heads, N, N))            attn = self.softmax(attn)        else:            attn = self.softmax(attn)        attn = self.attn_drop(attn)        x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((B_, N, C))        x = self.proj(x)        x = self.proj_drop(x)        return xclass SwinTransformerBlock(nn.Layer):    r""" Swin Transformer Block.    Args:        dim (int): Number of input channels.        input_resolution (tuple[int]): Input resulotion.        num_heads (int): Number of attention heads.        window_size (int): Window size.        shift_size (int): Shift size for SW-MSA.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float, optional): Stochastic depth rate. Default: 0.0        act_layer (nn.Layer, optional): Activation layer. Default: nn.GELU        norm_layer (nn.Layer, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):        super().__init__()        self.dim = dim        self.input_resolution = input_resolution        self.num_heads = num_heads        self.window_size = window_size        self.shift_size = shift_size        self.mlp_ratio = mlp_ratio        if min(self.input_resolution) <= self.window_size:            # if window size is larger than input resolution, we don't partition windows            self.shift_size = 0            self.window_size = min(self.input_resolution)        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"        self.norm1 = norm_layer(dim)        self.attn = WindowAttention(            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()        self.norm2 = norm_layer(dim)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,                       act_layer=act_layer, drop=drop)        if self.shift_size > 0:            # calculate attention mask for SW-MSA            H, W = self.input_resolution            img_mask = paddle.zeros((1, H, W, 1))  # 1 H W 1            h_slices = (slice(0, -self.window_size),                        slice(-self.window_size, -self.shift_size),                        slice(-self.shift_size, None))            w_slices = (slice(0, -self.window_size),                        slice(-self.window_size, -self.shift_size),                        slice(-self.shift_size, None))            cnt = 0            for h in h_slices:                for w in w_slices:                    img_mask[:, h, w, :] = cnt                    cnt += 1            # nW, window_size, window_size, 1            mask_windows = window_partition(img_mask, self.window_size)            mask_windows = mask_windows.reshape((-1,                                                 self.window_size * self.window_size))            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)            _h = paddle.full_like(attn_mask, -100.0, dtype='float32')            _z = paddle.full_like(attn_mask, 0.0, dtype='float32')            attn_mask = paddle.where(attn_mask != 0, _h, _z)        else:            attn_mask = None        self.register_buffer("attn_mask", attn_mask)    def forward(self, x):        H, W = self.input_resolution        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        shortcut = x        x = self.norm1(x)        x = x.reshape((B, H, W, C))        # cyclic shift        if self.shift_size > 0:            shifted_x = paddle.roll(                x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2))        else:            shifted_x = x        # partition windows        # nW*B, window_size, window_size, C        x_windows = window_partition(shifted_x, self.window_size)        # nW*B, window_size*window_size, C        x_windows = x_windows.reshape(            (-1, self.window_size * self.window_size, C))        # W-MSA/SW-MSA        # nW*B, window_size*window_size, C        attn_windows = self.attn(x_windows, mask=self.attn_mask)        # merge windows        attn_windows = attn_windows.reshape(            (-1, self.window_size, self.window_size, C))        shifted_x = window_reverse(            attn_windows, self.window_size, H, W)  # B H' W' C        # reverse cyclic shift        if self.shift_size > 0:            x = paddle.roll(shifted_x, shifts=(                self.shift_size, self.shift_size), axis=(1, 2))        else:            x = shifted_x        x = x.reshape((B, H * W, C))        # FFN        x = shortcut + self.drop_path(x)        x = x + self.drop_path(self.mlp(self.norm2(x)))        return xclass PatchMerging(nn.Layer):    r""" Patch Merging Layer.    Args:        input_resolution (tuple[int]): Resolution of input feature.        dim (int): Number of input channels.        norm_layer (nn.Layer, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):        super().__init__()        self.input_resolution = input_resolution        self.dim = dim        self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)        self.norm = norm_layer(4 * dim)    def forward(self, x):        """        x: B, H*W, C        """        H, W = self.input_resolution        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."        x = x.reshape((B, H, W, C))        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C        x = paddle.concat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C        x = x.reshape((B, -1, 4 * C))  # B H/2*W/2 4*C        x = self.norm(x)        x = self.reduction(x)        return xclass BasicLayer(nn.Layer):    """ A basic Swin Transformer layer for one stage.    Args:        dim (int): Number of input channels.        input_resolution (tuple[int]): Input resolution.        depth (int): Number of blocks.        num_heads (int): Number of attention heads.        window_size (int): Local window size.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0        norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm        downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None    """    def __init__(self, dim, input_resolution, depth, num_heads, window_size,                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None):        super().__init__()        self.dim = dim        self.input_resolution = input_resolution        self.depth = depth        # build blocks        self.blocks = nn.LayerList([            SwinTransformerBlock(dim=dim, input_resolution=input_resolution,                                 num_heads=num_heads, window_size=window_size,                                 shift_size=0 if (                                     i % 2 == 0) else window_size // 2,                                 mlp_ratio=mlp_ratio,                                 qkv_bias=qkv_bias, qk_scale=qk_scale,                                 drop=drop, attn_drop=attn_drop,                                 drop_path=drop_path[i] if isinstance(                                     drop_path, np.ndarray) else drop_path,                                 norm_layer=norm_layer)            for i in range(depth)])        # patch merging layer        if downsample is not None:            self.downsample = downsample(                input_resolution, dim=dim, norm_layer=norm_layer)        else:            self.downsample = None    def forward(self, x):        for blk in self.blocks:            x = blk(x)        if self.downsample is not None:            x = self.downsample(x)        return xclass PatchEmbed(nn.Layer):    r""" Image to Patch Embedding    Args:        img_size (int): Image size.  Default: 224.        patch_size (int): Patch token size. Default: 4.        in_chans (int): Number of input image channels. Default: 3.        embed_dim (int): Number of linear projection output channels. Default: 96.        norm_layer (nn.Layer, optional): Normalization layer. Default: None    """    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):        super().__init__()        img_size = to_2tuple(img_size)        patch_size = to_2tuple(patch_size)        patches_resolution = [img_size[0] //                              patch_size[0], img_size[1] // patch_size[1]]        self.img_size = img_size        self.patch_size = patch_size        self.patches_resolution = patches_resolution        self.num_patches = patches_resolution[0] * patches_resolution[1]        self.in_chans = in_chans        self.embed_dim = embed_dim        self.proj = nn.Conv2D(in_chans, embed_dim,                              kernel_size=patch_size, stride=patch_size)        if norm_layer is not None:            self.norm = norm_layer(embed_dim)        else:            self.norm = None    def forward(self, x):        B, C, H, W = x.shape        # FIXME look at relaxing size constraints        assert H == self.img_size[0] and W == self.img_size[1], \            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."        x = self.proj(x).flatten(2).transpose((0, 2, 1))  # B Ph*Pw C        if self.norm is not None:            x = self.norm(x)        return xclass SwinTransformer(nn.Layer):    r""" Swin Transformer        A Paddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -          https://arxiv.org/pdf/2103.14030    Args:        img_size (int | tuple(int)): Input image size. Default 224        patch_size (int | tuple(int)): Patch size. Default: 4        in_chans (int): Number of input image channels. Default: 3        class_dim (int): Number of classes for classification head. Default: 1000        embed_dim (int): Patch embedding dimension. Default: 96        depths (tuple(int)): Depth of each Swin Transformer layer.        num_heads (tuple(int)): Number of attention heads in different layers.        window_size (int): Window size. Default: 7        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None        drop_rate (float): Dropout rate. Default: 0        attn_drop_rate (float): Attention dropout rate. Default: 0        drop_path_rate (float): Stochastic depth rate. Default: 0.1        norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm.        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False        patch_norm (bool): If True, add normalization after patch embedding. Default: True    """    def __init__(self, img_size=224, patch_size=4, in_chans=3,                 embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],                 window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,                 class_dim=1000, with_pool=True, **kwargs):        super().__init__()        self.class_dim = class_dim        self.with_pool = with_pool        self.num_layers = len(depths)        self.embed_dim = embed_dim        self.ape = ape        self.patch_norm = patch_norm        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))        self.mlp_ratio = mlp_ratio        # split image into non-overlapping patches        self.patch_embed = PatchEmbed(            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,            norm_layer=norm_layer if self.patch_norm else None)        num_patches = self.patch_embed.num_patches        patches_resolution = self.patch_embed.patches_resolution        self.patches_resolution = patches_resolution        # absolute position embedding        if self.ape:            self.absolute_pos_embed = self.create_parameter(                shape=(1, num_patches, embed_dim),                default_initializer=zeros_            )            self.add_parameter("absolute_pos_embed", self.absolute_pos_embed)            trunc_normal_(self.absolute_pos_embed)        self.pos_drop = nn.Dropout(p=drop_rate)        # stochastic depth        dpr = np.linspace(0, drop_path_rate, sum(depths))        # build layers        self.layers = nn.LayerList()        for i_layer in range(self.num_layers):            layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),                               input_resolution=(patches_resolution[0] // (2 ** i_layer),                                                 patches_resolution[1] // (2 ** i_layer)),                               depth=depths[i_layer],                               num_heads=num_heads[i_layer],                               window_size=window_size,                               mlp_ratio=self.mlp_ratio,                               qkv_bias=qkv_bias, qk_scale=qk_scale,                               drop=drop_rate, attn_drop=attn_drop_rate,                               drop_path=dpr[sum(depths[:i_layer]):sum(                                   depths[:i_layer + 1])],                               norm_layer=norm_layer,                               downsample=PatchMerging if (                                   i_layer < self.num_layers - 1) else None                               )            self.layers.append(layer)        self.norm = norm_layer(self.num_features)        if with_pool:            self.avgpool = nn.AdaptiveAvgPool1D(1)                if class_dim > 0:            self.head = nn.Linear(self.num_features, class_dim)        self.apply(self._init_weights)    def _init_weights(self, m):        if isinstance(m, nn.Linear):            trunc_normal_(m.weight)            if isinstance(m, nn.Linear) and m.bias is not None:                zeros_(m.bias)        elif isinstance(m, nn.LayerNorm):            zeros_(m.bias)            ones_(m.weight)    def forward_features(self, x):        x = self.patch_embed(x)        if self.ape:            x = x + self.absolute_pos_embed        x = self.pos_drop(x)        for layer in self.layers:            x = layer(x)        x = self.norm(x)  # B L C        return x.transpose((0, 2, 1)) # B C 1    def forward(self, x):        x = self.forward_features(x)        if self.with_pool:            x = self.avgpool(x)         if self.class_dim > 0:            x = paddle.flatten(x, 1)            x = self.head(x)        return x
登录后复制    

验证集数据处理

In [3]
def get_transforms(resize, crop):    transforms = [T.Resize(resize, interpolation='bicubic')]    if crop:        transforms.append(T.CenterCrop(crop))    transforms.append(T.ToTensor())    transforms.append(T.Normalize(        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))    transforms = T.Compose(transforms)    return transformstransforms_224 = get_transforms(256, 224)transforms_384 = get_transforms((384, 384), None)
登录后复制    

预设模型

In [4]
def swin_ti(pretrained=False, **kwargs):    model = SwinTransformer(**kwargs)    if pretrained:        model.set_dict(paddle.load('data/data80934/swin_tiny_patch2_window7_224.pdparams'))    return model, transforms_224def swin_s(pretrained=False, **kwargs):    model = SwinTransformer(        depths=[2, 2, 18, 2],        num_heads=[3, 6, 12, 24]        ** kwargs    )    if pretrained:        model.set_dict(paddle.load('data/data80934/swin_small_patch2_window7_224.pdparams'))    return model, transforms_224def swin_b(pretrained=False, **kwargs):    model = SwinTransformer(        embed_dim=128,        depths=[2, 2, 18, 2],        num_heads=[4, 8, 16, 32]        ** kwargs    )    if pretrained:        model.set_dict(paddle.load('data/data80934/swin_base_patch2_window7_224.pdparams'))    return model, transforms_224def swin_b_384(pretrained=False, **kwargs):    model = SwinTransformer(        img_size=384,        embed_dim=128,        depths=[2, 2, 18, 2],        num_heads=[4, 8, 16, 32],        window_size=12,        **kwargs    )    if pretrained:        model.set_dict(paddle.load('data/data80934/swin_base_patch2_window12_384.pdparams'))    return model, transforms_384
登录后复制    

精度验证

解压数据集

In [ ]
# 解压数据集!mkdir ~/data/ILSVRC2012!tar -xf ~/data/data68594/ILSVRC2012_img_val.tar -C ~/data/ILSVRC2012
登录后复制    

模型验证

In [5]
import osimport cv2import numpy as npimport paddle# from ppim import pit_b_distilledfrom PIL import Image# 构建数据集class ILSVRC2012(paddle.io.Dataset):    def __init__(self, root, label_list, transform, backend='pil'):        self.transform = transform        self.root = root        self.label_list = label_list        self.backend = backend        self.load_datas()    def load_datas(self):        self.imgs = []        self.labels = []        with open(self.label_list, 'r') as f:            for line in f:                img, label = line[:-1].split(' ')                self.imgs.append(os.path.join(self.root, img))                self.labels.append(int(label))    def __getitem__(self, idx):        label = self.labels[idx]        image = self.imgs[idx]        if self.backend=='cv2':            image = cv2.imread(image)        else:            image = Image.open(image).convert('RGB')        image = self.transform(image)        return image.astype('float32'), np.array(label).astype('int64')    def __len__(self):        return len(self.imgs)# 配置模型model, val_transforms = swin_ti(pretrained=True)model = paddle.Model(model)model.prepare(metrics=paddle.metric.Accuracy(topk=(1, 5)))# 配置数据集val_dataset = ILSVRC2012('data/ILSVRC2012', transform=val_transforms, label_list='data/data68594/val_list.txt')# 模型验证model.evaluate(val_dataset, batch_size=512)
登录后复制        
Eval begin...The loss value printed in the log is the current batch, and the metric is the average value of previous step.
登录后复制        
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  return (isinstance(seq, collections.Sequence) and
登录后复制        
step 10/98 - acc_top1: 0.8164 - acc_top5: 0.9547 - 7s/stepstep 20/98 - acc_top1: 0.8155 - acc_top5: 0.9549 - 7s/stepstep 30/98 - acc_top1: 0.8113 - acc_top5: 0.9542 - 7s/stepstep 40/98 - acc_top1: 0.8113 - acc_top5: 0.9543 - 7s/stepstep 50/98 - acc_top1: 0.8115 - acc_top5: 0.9547 - 7s/stepstep 60/98 - acc_top1: 0.8115 - acc_top5: 0.9547 - 7s/stepstep 70/98 - acc_top1: 0.8107 - acc_top5: 0.9550 - 7s/stepstep 80/98 - acc_top1: 0.8116 - acc_top5: 0.9549 - 7s/stepstep 90/98 - acc_top1: 0.8113 - acc_top5: 0.9549 - 6s/stepstep 98/98 - acc_top1: 0.8119 - acc_top5: 0.9551 - 6s/stepEval samples: 50000
登录后复制        
{'acc_top1': 0.81186, 'acc_top5': 0.9551}
登录后复制                

热门推荐

更多

热门文章

更多

首页  返回顶部

本站所有软件都由网友上传,如有侵犯您的版权,请发邮件youleyoucom@outlook.com